The Case for an Outright Ban on Facial Recognition Technology
[Editor's Note: This essay is in response to our current Big Question, which we posed to experts with different perspectives: "Do you think the use of facial recognition technology by the police or government should be banned? If so, why? If not, what limits, if any, should be placed on its use?"]
In a surprise appearance at the tail end of Amazon's much-hyped annual product event last month, CEO Jeff Bezos casually told reporters that his company is writing its own facial recognition legislation.
The use of computer algorithms to analyze massive databases of footage and photographs could render human privacy extinct.
It seems that when you're the wealthiest human alive, there's nothing strange about your company––the largest in the world profiting from the spread of face surveillance technology––writing the rules that govern it.
But if lawmakers and advocates fall into Silicon Valley's trap of "regulating" facial recognition and other forms of invasive biometric surveillance, that's exactly what will happen.
Industry-friendly regulations won't fix the dangers inherent in widespread use of face scanning software, whether it's deployed by governments or for commercial purposes. The use of this technology in public places and for surveillance purposes should be banned outright, and its use by private companies and individuals should be severely restricted. As artificial intelligence expert Luke Stark wrote, it's dangerous enough that it should be outlawed for "almost all practical purposes."
Like biological or nuclear weapons, facial recognition poses such a profound threat to the future of humanity and our basic rights that any potential benefits are far outweighed by the inevitable harms.
We live in cities and towns with an exponentially growing number of always-on cameras, installed in everything from cars to children's toys to Amazon's police-friendly doorbells. The use of computer algorithms to analyze massive databases of footage and photographs could render human privacy extinct. It's a world where nearly everything we do, everywhere we go, everyone we associate with, and everything we buy — or look at and even think of buying — is recorded and can be tracked and analyzed at a mass scale for unimaginably awful purposes.
Biometric tracking enables the automated and pervasive monitoring of an entire population. There's ample evidence that this type of dragnet mass data collection and analysis is not useful for public safety, but it's perfect for oppression and social control.
Law enforcement defenders of facial recognition often state that the technology simply lets them do what they would be doing anyway: compare footage or photos against mug shots, drivers licenses, or other databases, but faster. And they're not wrong. But the speed and automation enabled by artificial intelligence-powered surveillance fundamentally changes the impact of that surveillance on our society. Being able to do something exponentially faster, and using significantly less human and financial resources, alters the nature of that thing. The Fourth Amendment becomes meaningless in a world where private companies record everything we do and provide governments with easy tools to request and analyze footage from a growing, privately owned, panopticon.
Tech giants like Microsoft and Amazon insist that facial recognition will be a lucrative boon for humanity, as long as there are proper safeguards in place. This disingenuous call for regulation is straight out of the same lobbying playbook that telecom companies have used to attack net neutrality and Silicon Valley has used to scuttle meaningful data privacy legislation. Companies are calling for regulation because they want their corporate lawyers and lobbyists to help write the rules of the road, to ensure those rules are friendly to their business models. They're trying to skip the debate about what role, if any, technology this uniquely dangerous should play in a free and open society. They want to rush ahead to the discussion about how we roll it out.
We need spaces that are free from government and societal intrusion in order to advance as a civilization.
Facial recognition is spreading very quickly. But backlash is growing too. Several cities have already banned government entities, including police and schools, from using biometric surveillance. Others have local ordinances in the works, and there's state legislation brewing in Michigan, Massachusetts, Utah, and California. Meanwhile, there is growing bipartisan agreement in U.S. Congress to rein in government use of facial recognition. We've also seen significant backlash to facial recognition growing in the U.K., within the European Parliament, and in Sweden, which recently banned its use in schools following a fine under the General Data Protection Regulation (GDPR).
At least two frontrunners in the 2020 presidential campaign have backed a ban on law enforcement use of facial recognition. Many of the largest music festivals in the world responded to Fight for the Future's campaign and committed to not use facial recognition technology on music fans.
There has been widespread reporting on the fact that existing facial recognition algorithms exhibit systemic racial and gender bias, and are more likely to misidentify people with darker skin, or who are not perceived by a computer to be a white man. Critics are right to highlight this algorithmic bias. Facial recognition is being used by law enforcement in cities like Detroit right now, and the racial bias baked into that software is doing harm. It's exacerbating existing forms of racial profiling and discrimination in everything from public housing to the criminal justice system.
But the companies that make facial recognition assure us this bias is a bug, not a feature, and that they can fix it. And they might be right. Face scanning algorithms for many purposes will improve over time. But facial recognition becoming more accurate doesn't make it less of a threat to human rights. This technology is dangerous when it's broken, but at a mass scale, it's even more dangerous when it works. And it will still disproportionately harm our society's most vulnerable members.
Persistent monitoring and policing of our behavior breeds conformity, benefits tyrants, and enriches elites.
We need spaces that are free from government and societal intrusion in order to advance as a civilization. If technology makes it so that laws can be enforced 100 percent of the time, there is no room to test whether those laws are just. If the U.S. government had ubiquitous facial recognition surveillance 50 years ago when homosexuality was still criminalized, would the LGBTQ rights movement ever have formed? In a world where private spaces don't exist, would people have felt safe enough to leave the closet and gather, build community, and form a movement? Freedom from surveillance is necessary for deviation from social norms as well as to dissent from authority, without which societal progress halts.
Persistent monitoring and policing of our behavior breeds conformity, benefits tyrants, and enriches elites. Drawing a line in the sand around tech-enhanced surveillance is the fundamental fight of this generation. Lining up to get our faces scanned to participate in society doesn't just threaten our privacy, it threatens our humanity, and our ability to be ourselves.
[Editor's Note: Read the opposite perspective here.]
Catching colds may help protect kids from Covid
A common cold virus causes the immune system to produce T cells that also provide protection against SARS-CoV-2, according to new research. The study, published last month in PNAS, shows that this effect is most pronounced in young children. The finding may help explain why most young people who have been exposed to the cold-causing coronavirus have not developed serious cases of COVID-19.
One curiosity stood out in the early days of the COVID-19 pandemic – why were so few kids getting sick. Generally young children and the elderly are the most vulnerable to disease outbreaks, particularly viral infections, either because their immune systems are not fully developed or they are starting to fail.
But solid information on the new infection was so scarce that many public health officials acted on the precautionary principle, assumed a worst-case scenario, and applied the broadest, most restrictive policies to all people to try to contain the coronavirus SARS-CoV-2.
One early thought was that lockdowns worked and kids (ages 6 months to 17 years) simply were not being exposed to the virus. So it was a shock when data started to come in showing that well over half of them carried antibodies to the virus, indicating exposure without getting sick. That trend grew over time and the latest tracking data from the CDC shows that 96.3 percent of kids in the U.S. now carry those antibodies.
Antibodies are relatively quick and easy to measure, but some scientists are exploring whether the reactions of T cells could serve as a more useful measure of immune protection.
But that couldn't be the whole story because antibody protection fades, sometimes as early as a month after exposure and usually within a year. Additionally, SARS-CoV-2 has been spewing out waves of different variants that were more resistant to antibodies generated by their predecessors. The resistance was so significant that over time the FDA withdrew its emergency use authorization for a handful of monoclonal antibodies with earlier approval to treat the infection because they no longer worked.
Antibodies got most of the attention early on because they are part of the first line response of the immune system. Antibodies can bind to viruses and neutralize them, preventing infection. They are relatively quick and easy to measure and even manufacture, but as SARS-CoV-2 showed us, often viruses can quickly evolve to become more resistant to them. Some scientists are exploring whether the reactions of T cells could serve as a more useful measure of immune protection.
Kids, colds and T cells
T cells are part of the immune system that deals with cells once they have become infected. But working with T cells is much more difficult, takes longer, and is more expensive than working with antibodies. So studies often lags behind on this part of the immune system.
A group of researchers led by Annika Karlsson at the Karolinska Institute in Sweden focuses on T cells targeting virus-infected cells and, unsurprisingly, saw that they can play a role in SARS-CoV-2 infection. Other labs have shown that vaccination and natural exposure to the virus generates different patterns of T cell responses.
The Swedes also looked at another member of the coronavirus family, OC43, which circulates widely and is one of several causes of the common cold. The molecular structure of OC43 is similar to its more deadly cousin SARS-CoV-2. Sometimes a T cell response to one virus can produce a cross-reactive response to a similar protein structure in another virus, meaning that T cells will identify and respond to the two viruses in much the same way. Karlsson looked to see if T cells for OC43 from a wide age range of patients were cross-reactive to SARS-CoV-2.
And that is what they found, as reported in the PNAS study last month; there was cross-reactive activity, but it depended on a person’s age. A subset of a certain type of T cells, called mCD4+,, that recognized various protein parts of the cold-causing virus, OC43, expressed on the surface of an infected cell – also recognized those same protein parts from SARS-CoV-2. The T cell response was lower than that generated by natural exposure to SARS-CoV-2, but it was functional and thus could help limit the severity of COVID-19.
“One of the most politicized aspects of our pandemic response was not accepting that children are so much less at risk for severe disease with COVID-19,” because usually young children are among the most vulnerable to pathogens, says Monica Gandhi, professor of medicine at the University of California San Francisco.
“The cross-reactivity peaked at age six when more than half the people tested have a cross-reactive immune response,” says Karlsson, though their sample is too small to say if this finding applies more broadly across the population. The vast majority of children as young as two years had OC43-specific mCD4+ T cell responses. In adulthood, the functionality of both the OC43-specific and the cross-reactive T cells wane significantly, especially with advanced age.
“Considering that the mortality rate in children is the lowest from ages five to nine, and higher in younger children, our results imply that cross-reactive mCD4+ T cells may have a role in the control of SARS-CoV-2 infection in children,” the authors wrote in their paper.
“One of the most politicized aspects of our pandemic response was not accepting that children are so much less at risk for severe disease with COVID-19,” because usually young children are among the most vulnerable to pathogens, says Monica Gandhi, professor of medicine at the University of California San Francisco and author of the book, Endemic: A Post-Pandemic Playbook, to be released by the Mayo Clinic Press this summer. The immune response of kids to SARS-CoV-2 stood our expectations on their head. “We just haven't seen this before, so knowing the mechanism of protection is really important.”
Why the T cell immune response can fade with age is largely unknown. With some viruses such as measles, a single vaccination or infection generates life-long protection. But respiratory tract infections, like SARS-CoV-2, cause a localized infection - specific to certain organs - and that response tends to be shorter lived than systemic infections that affect the entire body. Karlsson suspects the elderly might be exposed to these localized types of viruses less often. Also, frequent continued exposure to a virus that results in reactivation of the memory T cell pool might eventually result in “a kind of immunosenescence or immune exhaustion that is associated with aging,” Karlsson says. https://leaps.org/scientists-just-started-testing-a-new-class-of-drugs-to-slow-and-even-reverse-aging/particle-3 This fading protection is why older people need to be repeatedly vaccinated against SARS-CoV-2.
Policy implications
Following the numbers on COVID-19 infections and severity over the last three years have shown us that healthy young people without risk factors are not likely to develop serious disease. This latest study points to a mechanism that helps explain why. But the inertia of existing policies remains. How should we adjust policy recommendations based on what we know today?
The World Health Organization (WHO) updated their COVID-19 vaccination guidance on March 28. It calls for a focus on vaccinating and boosting those at risk for developing serious disease. The guidance basically shrugged its shoulders when it came to healthy children and young adults receiving vaccinations and boosters against COVID-19. It said the priority should be to administer the “traditional essential vaccines for children,” such as those that protect against measles, rubella, and mumps.
“As an immunologist and a mother, I think that catching a cold or two when you are a kid and otherwise healthy is not that bad for you. Children have a much lower risk of becoming severely ill with SARS-CoV-2,” says Karlsson. She has followed public health guidance in Sweden, which means that her young children have not been vaccinated, but being older, she has received the vaccine and boosters. Gandhi and her children have been vaccinated, but they do not plan on additional boosters.
The WHO got it right in “concentrating on what matters,” which is getting traditional childhood immunizations back on track after their dramatic decline over the last three years, says Gandhi. Nor is there a need for masking in schools, according to a study from the Catalonia region of Spain. It found “no difference in masking and spread in schools,” particularly since tracking data indicate that nearly all young people have been exposed to SARS-CoV-2.
Both researchers lament that public discussion has overemphasized the quickly fading antibody part of the immune response to SARS-CoV-2 compared with the more durable T cell component. They say developing an efficient measure of T cell response for doctors to use in the clinic would help to monitor immunity in people at risk for severe cases of COVID-19 compared with the current method of toting up potential risk factors.
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on new scientific theories and progress to give you a therapeutic dose of inspiration headed into the weekend.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the stories covered this week:
- The eyes are the windows to the soul - and biological aging?
- What bean genes mean for health and the planet
- This breathing practice could lower levels of tau proteins
- AI beats humans at assessing heart health
- Should you get a nature prescription?