The First Cloned Monkeys Provoked More Shrugs Than Shocks

The First Cloned Monkeys Provoked More Shrugs Than Shocks

Zhong Zhong and Hua Hua, the two cloned macaques.

(Credit: Qiang Sun and Mu-ming Poo, Institute of Neuroscience of the Chinese Academy of Sciences)


Keep Reading Keep Reading
Bernard Siegel
Bernard Siegel, J.D., is the Executive Director of the nonprofit Regenerative Medicine Foundation, with a mission of accelerating regenerative medicine to improve health and deliver cures. Bernie founded and co-chairs the annual World Stem Cell Summit & RegMed Capital Conference, founded and serves as editor-in-chief of the peer-reviewed World Stem Cell Report (AlphaMed Press) and is the editor of the 360 Stem Cell & Regenerative Medicine weekly newsletter. He founded and is the spokesperson for the Stem Cell Action Coalition, a 100+ member international alliance of nonprofits and research institutions leading the global "Pro-Cures Movement." As a recognized advocacy and policy expert in the fields of stem cell research, regenerative medicine and related subjects, Bernie works with the leading scientists and patient advocates, raising public awareness and educating lawmakers, the media and public.
New Options Are Emerging in the Search for Better Birth Control

Photo by JPC-PROD on Adobe Stock

About decade ago, Elizabeth Summers' options for birth control suddenly narrowed. Doctors diagnosed her with Factor V Leiden, a rare genetic disorder, after discovering blood clots in her lungs. The condition increases the risk of clotting, so physicians told Summers to stay away from the pill and other hormone-laden contraceptives. "Modern medicine has generally failed to provide me with an effective and convenient option," she says.

But new birth control options are emerging for women like Summers. These alternatives promise to provide more choices to women who can't ingest hormones or don't want to suffer their unpleasant side effects.

Keep Reading Keep Reading
Jared Whitlock
Jared Whitlock is a freelance health reporter. His work has appeared in publications such as The New York Times, WIRED and Voice of San Diego, with support from USC Annenberg Center for Health Journalism and Investigative Reporters and Editors. He's a current fellow in MIT's Knight Science Journalism program.
Hyperbaric oxygen therapy could treat Long COVID, new study shows

Hyperbaric oxygen therapy has been used in the past to help people with traumatic brain injury, stroke and other conditions involving wounds to the brain. Now, researchers at Shamir Medical Center in Tel Aviv are studying how it could treat Long Covid.

Shai Efrati

Long COVID is not a single disease, it is a syndrome or cluster of symptoms that can arise from exposure to SARS-CoV-2, a virus that affects an unusually large number of different tissue types. That's because the ACE2 receptor it uses to enter cells is common throughout the body, and inflammation from the immune response fighting that infection can damage surrounding tissue.

One of the most widely shared groups of symptoms is fatigue and what has come to be called “brain fog,” a difficulty focusing and an amorphous feeling of slowed mental functioning and capacity. Researchers have tied these COVID-related symptoms to tissue damage in specific sections of the brain and actual shrinkage in its size.

When Shai Efrati, medical director of the Sagol Center for Hyperbaric Medicine and Research in Tel Aviv, first looked at functional magnetic resonance images (fMRIs) of patients with what is now called long COVID, he saw “micro infarcts along the brain.” It reminded him of similar lesions in other conditions he had treated with hyperbaric oxygen therapy (HBOT). “Once we saw that, we said, this is the type of wound we can treat. It doesn't matter if the primary cause is mechanical injury like TBI [traumatic brain injury] or stroke … we know how to oxidize them.”
Keep Reading Keep Reading
Bob Roehr
Bob Roehr is a biomedical journalist based in Washington, DC. Over the last twenty-five years he has written extensively for The BMJ, Scientific American, PNAS, Proto, and myriad other publications. He is primarily interested in HIV, infectious disease, immunology, and how growing knowledge of the microbiome is changing our understanding of health and disease. He is working on a book about the ways the body can at least partially control HIV and how that has influenced (or not) the search for a treatment and cure.