The Top 8 Things to Know About Anti-Aging Research Right Now
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Dr. Michael West has a storied legacy in the world of aging research. Twenty years ago, the company he started, Geron, hit upon a major breakthrough when his scientists isolated the active component for the gene that confers immortality to cells, called telomerase.
In the twenty years since, a new field has emerged: the science of extending the human "healthspan."
He was in the lab when scientists for the first time artificially turned on the gene in some skin cells donated by Dr. Leonard Hayflick, the man who had discovered back in 1965 that human cells age over time. Sure enough, with Geron's intervention, Hayflick's skin cells became immortal in the dish, and the landmark paper was published in Science in 1998.
In the twenty years since, a new field has emerged: the science of extending the human "healthspan" – the length of time people can live free of diseases related to aging. A substantial amount of preclinical and some clinical research is now underway, backed by heavy investments from some of the world's largest companies.
Today, Dr. West is the CEO of AgeX Therapeutics, a biotech company that is developing novel therapeutics to target human aging and age-related degenerative diseases using pluripotent stem cells. Dr. West recently shared some key insights with Editor-in-Chief Kira Peikoff about what's happening in this exciting space.
1) Pluripotent stem cells have opened the door for the first time in human history to manufacturing young cells and young tissue of any kind.
These are the body's master cells: They are self-replicating, and they can potentially give rise to any cell or tissue the body needs to repair itself. This year marks the 20th anniversary since their isolation for the first time in a lab.
"People in biotech say that the time from lab to discovery in products is about 20 years," West says. "But the good news is we're at that 20-year mark now, so you're seeing an explosive growth of applications. We can now make all cell types of the human body in a scalable manner."
2) Early human development could hold the key to unlocking the mystery of aging.
West believes that two things occur when the body forms in utero: telomerase, the immortalizing gene, gets turned off very early in development in the body cells like skin, liver, and nerves. Additionally, he thinks that a second genetic switch gets turned off that holds the potential for regeneration after injury.
"These insights open the door to intervention by the transfer of telomerase into the cells of the body."
"Very early when the body is first forming, if you cut the skin, it will not respond by scarring, but will regenerate scarlessly," he says. "But that potential gets turned off once the body is formed, about 8 weeks after fertilization. Then, you accumulate damage over a lifetime. Not only do cells have a finite capacity to replicate, but you have tissue damage."
However, there are animals in nature whose telomerase is never turned off, or whose regenerative ability is never turned off. The flatworm, for example, can regenerate its own head if it gets cut off, and it also shows no detectable aging. Lobsters are believed to be similar. (That's not to say it can't get caught and eaten for dinner.)
"These insights open the door to intervention by the transfer of telomerase into the cells of the body, or understanding how regeneration gets turned off, and then turning it back on," West says. "That's well within the power of modern medical research to understand."
3) Companies are investing tremendous resources into the anti-aging gold rush.
Devising interventions is the mission of AgeX, a subsidiary of BioTime, as well as a number of other companies.
"We're seeing a mad rush," West says. There's Google's Calico, which recently announced, with AbbVie Inc., another $1 billion into research for age-related diseases, on top of the previous $1.5 billion investment.
Other notable players include Unity Biotechnology, Samumed, Human Longevity Inc., RestorBio, Rejuvenate Bio,and Juvenescence (which is also an investor in AgeX).
"These are products in development by our company and others that the baby boomers can reasonably anticipate being available within their lifetimes."
4) The majority of clinical applications are still years away.
"What we've learned about turning back on this regenerative state, called induced tissue regeneration, is that the majority of the clinical implications are years away and will require years of clinical trials before potential FDA approval and marketing to the public," West says. "But we have found some potential near-term applications that we think may have a much faster track to commercialization. As you can imagine, we are all over those."
BioTime, Inc., AgeX's parent, has a regenerative medicine product in clinical trials for age-related macular degeneration, the leading cause of blindness in an aging population. While not yet approved by the FDA, BioTime has reported continued progress in the clinical development of the product now in Phase II trials.
Dr. Michael West, CEO of AgeX
Citi recently issued a major report, Disruptive Innovations VI, that included "Anti-Aging Medicines" as the number two innovation for investors to keep an eye on, and predicted that the first anti-aging therapies could receive regulatory approval by 2023.
5) Few, if any, medical interventions are available today that are proven to markedly slow aging - yet. But the Baby Boomers are not necessarily out of luck.
Buyer beware of any claims in the marketplace that a given skin cream or stem cell product will extend your life. More than likely, they won't.
"There are a lot of people trying to cash in on the aging baby boom population," West warns.
"When you hear claims of stem cell products that you can get now, it's important to understand that they are likely not based on pluripotent stem cell technology. Also, they are usually not products approved by the FDA, having gone through clinical trials to demonstrate safety and efficacy."
However, an array of young pluripotent stem cell-derived therapies are on a development track for future approvals.
One example is another program at AgeX: the manufacture of brown fat cells; these cells burn calories rather than store them. They burn circulating fat like triglycerides and sugar in the blood and generate heat.
"You lose brown fat in aging, and animal models suggest that if you restore that tissue, you can restore a metabolic balance to be more like what you had when you were young," says West. "When I was 18, I could drink milkshakes all day long and not gain an ounce. But at 50 or 60, most of us would rapidly put on weight. Why? We believe that one important factor is that with age, you lose this brown fat tissue. The loss throws your metabolism off balance. So the solution is conceptually simple, we plan to make young brown fat cells for transplantation to reset the balance, potentially to treat Type II diabetes or even obesity.
"These are products in development by our company and others that the baby boomers can reasonably anticipate being available within their lifetimes."
6) There is an ethical debate about how far to apply this new science.
Some people are speculating about whether genetic engineering might one day be used to program longer lifespans into humans at the earliest stages of development. (Note: it is against the law across the Western world to edit human embryos intended for reproduction, although just last week, Chinese scientists used CRISPR to repair a disease-causing mutation in viable human embryos.)
West sounds a cautionary note about such interventions meant to lengthen life. "For people who think not just about the science, but the ethics, safety is a major concern. It's entirely possible to genetically engineer babies, but when you make such modifications, it's an experiment, not just in human cells in a dish, but in a human being. I have a great reticence to put any human at risk unless it's a case where the person is suffering with a life-threatening disease, and the potential therapy is their last best hope."
"I have no doubt, zero doubt, that in the foreseeable future, we'll hear of a person who has lived to about 150."
7) The biggest challenge of intervening in human aging is cultural denial.
"The prospect of intervening in a profound way in human aging is still not seen as credible by the vast majority of thoughtful people around the world," West laments.
"Aging is a universal phenomenon, it's mankind's greatest enemy, but as a species we've adapted to the realities of finite lifespans and death. We have a whole infrastructure of belief systems around this, and many people see it as inevitable."
8) The lifespan for healthy children born today could surpass anything humanity has ever seen.
"It is at least 150 years of age," West predicts. "I have no doubt, zero doubt, that in the foreseeable future, we'll hear of a person who has lived to about 150. We know now it's possible. I've never said that publicly before, but I am comfortable now with the prediction. And, of course, if some people now living could live to 150 years of age, we have the prospect of them living to see even more powerful therapies. So, the question now is, what kind of a world are we going to make for future generations?"
[Editor's Note: Check out our latest video, which was inspired by Dr. West's exclusive prediction to leapsmag.]
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Last week, researchers at the University of Oxford announced that they have received funding to create a brand new way of preventing ovarian cancer: A vaccine. The vaccine, known as OvarianVax, will teach the immune system to recognize and destroy mutated cells—one of the earliest indicators of ovarian cancer.
Understanding Ovarian Cancer
Despite advancements in medical research and treatment protocols over the last few decades, ovarian cancer still poses a significant threat to women’s health. In the United States alone, more than 12,0000 women die of ovarian cancer each year, and only about half of women diagnosed with ovarian cancer survive five or more years past diagnosis. Unlike cervical cancer, there is no routine screening for ovarian cancer, so it often goes undetected until it has reached advanced stages. Additionally, the primary symptoms of ovarian cancer—frequent urination, bloating, loss of appetite, and abdominal pain—can often be mistaken for other non-cancerous conditions, delaying treatment.
An American woman has roughly a one percent chance of developing ovarian cancer throughout her lifetime. However, these odds increase significantly if she has inherited mutations in the BRCA1 or BRCA2 genes. Women who carry these mutations face a 46% lifetime risk for ovarian and breast cancers.
An Unlikely Solution
To address this escalating health concern, the organization Cancer Research UK has invested £600,000 over the next three years in research aimed at creating a vaccine, which would destroy cancerous cells before they have a chance to develop any further.
Researchers at the University of Oxford are at the forefront of this initiative. With funding from Cancer Research UK, scientists will use tissue samples from the ovaries and fallopian tubes of patients currently battling ovarian cancer. Using these samples, University of Oxford scientists will create a vaccine to recognize certain proteins on the surface of ovarian cancer cells known as tumor-associated antigens. The vaccine will then train that person’s immune system to recognize the cancer markers and destroy them.
The next step
Once developed, the vaccine will first be tested in patients with the disease, to see if their ovarian tumors will shrink or disappear. Then, the vaccine will be tested in women with the BRCA1 or BRCA2 mutations as well as women in the general population without genetic mutations, to see whether the vaccine can prevent the cancer altogether.
While the vaccine still has “a long way to go,” according to Professor Ahmed Ahmed, Director of Oxford University’s ovarian cancer cell laboratory, he is “optimistic” about the results.
“We need better strategies to prevent ovarian cancer,” said Ahmed in a press release from the University of Oxford. “Currently, women with BRCA1/2 mutations are offered surgery which prevents cancer but robs them of the chance to have children afterward.
Teaching the immune system to recognize the very early signs of cancer is a tough challenge. But we now have highly sophisticated tools which give us real insights into how the immune system recognizes ovarian cancer. OvarianVax could offer the solution.”
How sharing, hearing, and remembering positive stories can help shape our brains for the better
Across cultures and through millennia, human beings have always told stories. Whether it’s a group of boy scouts around a campfire sharing ghost stories or the paleolithic Cro-Magnons etching pictures of bison on cave walls, researchers believe that storytelling has been universal to human beings since the development of language.
But storytelling was more than just a way for our ancestors to pass the time. Researchers believe that storytelling served an important evolutionary purpose, helping humans learn empathy, share important information (such as where predators were or what berries were safe to eat), as well as strengthen social bonds. Quite literally, storytelling has made it possible for the human race to survive.
Today, neuroscientists are discovering that storytelling is just as important now as it was millions of years ago. Particularly in sharing positive stories, humans can more easily form relational bonds, develop a more flexible perspective, and actually grow new brain circuitry that helps us survive. Here’s how.
How sharing stories positively impacts the brain
When human beings share stories, it increases the levels of certain neurochemicals in the brain, neuroscientists have found. In a 2021 study published in Proceedings of the National Academy of Sciences (PNAS), Swedish researchers found that simply hearing a story could make hospitalized children feel better, compared to other hospitalized children who played a riddle game for the same amount of time. In their research, children in the intensive care unit who heard stories for just 30 minutes had higher levels of oxytocin, a hormone that promotes positive feelings and is linked to relaxation, trust, social connectedness, and overall psychological stability. Furthermore, the same children showed lower levels of cortisol, a hormone associated with stress. Afterward, the group of children who heard stories tended to describe their hospital experiences more positively, and even reported lower levels of pain.
Annie Brewster, MD, knows the positive effect of storytelling from personal experience. An assistant professor at Harvard Medical School and the author of The Healing Power of Storytelling: Using Personal Narrative to Navigate Illness, Trauma, and Loss, Brewster started sharing her personal experience with chronic illness after being diagnosed with multiple sclerosis in 2001. In doing so, Brewster says it has enabled her to accept her diagnosis and integrate it into her identity. Brewster believes so much in the power of hearing and sharing stories that in 2013 she founded Health Story Collaborative, a forum for others to share their mental and physical health challenges.“I wanted to hear stories of people who had found ways to move forward in positive ways, in spite of health challenges,” Brewster said. In doing so, Brewster believes people with chronic conditions can “move closer to self-acceptance and self-love.”
While hearing and sharing positive stories has been shown to increase oxytocin and other “feel good” chemicals, simply remembering a positive story has an effect on our brains as well. Mark Hoelterhoff, PhD, a lecturer in clinical psychology at the University of Edinburgh, recalling and “savoring” a positive story, thought, or feedback “begins to create new brain circuitry—a new neural network that’s geared toward looking for the positive,” he says. Over time, other research shows, savoring positive stories or thoughts can literally change the shape of your brain, hard-wiring someone to see things in a more positive light.How stories can change your behavior
In 2009, Paul Zak, PhD, a neuroscientist and professor at Claremont Graduate University, set out to measure how storytelling can actually change human behavior for the better. In his study, Zak wanted to measure the behavioral effects of oxytocin, and did this by showing test subjects two short video clips designed to elicit an emotional response.
In the first video they showed the study participants, a father spoke to the camera about his two-year-old son, Ben, who had been diagnosed with terminal brain cancer. The father told the audience that he struggled to connect with and enjoy Ben, as Ben had only a few months left to live. In the end, the father finds the strength to stay emotionally connected to his son until he dies.
The second video clip, however, was much less emotional. In that clip, the same father and son are shown spending the day at the zoo. Ben is only suggested to have cancer (he is bald from chemotherapy and referred to as a ‘miracle’, but the cancer isn’t mentioned directly). The second story lacked the dramatic narrative arc of the first video.
Zak’s team took blood before and after the participants watched one of the two videos and found that the first story increased the viewers’ cortisol and oxytocin, suggesting that they felt distress over the boy’s diagnosis and empathy toward the boy and his father. The second narrative, however, didn’t increase oxytocin or cortisol at all.
But Zak took the experiment a step further. After the movie clips, his team gave the study participants a chance to share money with a stranger in the lab. The participants who had an increase in cortisol and oxytocin were more likely to donate money generously. The participants who had increased cortisol and oxytocin were also more likely to donate money to a charity that works with children who are ill. Zak also found that the amount of oxytocin that was released was correlated with how much money people felt comfortable giving—in other words, the more oxytocin that was released, the more generous they felt, and the more money they donated.
How storytelling strengthens our bond with others
Sharing, hearing, and remembering stories can be a powerful tool for social change–not only in the way it changes our brain and our behavior, but also because it can positively affect our relationships with other people
Emotional stimulation from telling stories, writes Zak, is the foundation for empathy, and empathy strengthens our relationships with other people. “By knowing someone’s story—where they come from, what they do, and who you might know in common—relationships with strangers are formed.”
But why are these relationships important for humanity? Because human beings can use storytelling to build empathy and form relationships, it enables them to “engage in the kinds of large-scale cooperation that builds massive bridges and sends humans into space,” says Zak.
Storytelling, Zak found, and the oxytocin release that follows, also makes people more sensitive to social cues. This sensitivity not only motivates us to form relationships, but also to engage with other people and offer help, particularly if the other person seems to need help.
But as Zak found in his experiments, the type of storytelling matters when it comes to affecting relationships. Where Zak found that storytelling with a dramatic arc helps release oxytocin and cortisol, enabling people to feel more empathic and generous, other researchers have found that sharing happy stories allows for greater closeness between individuals and speakers. A group of Chinese researchers found that, compared to emotionally-neutral stories, happy stories were more “emotionally contagious.” Test subjects who heard happy stories had greater activation in certain areas of their brains, experienced more significant, positive changes in their mood, and felt a greater sense of closeness between themselves and the speaker.
“This finding suggests that when individuals are happy, they become less self-focused and then feel more intimate with others,” the authors of the study wrote. “Therefore, sharing happiness could strengthen interpersonal bonding.” The researchers went on to say that this could lead to developing better social networks, receiving more social support, and leading more successful social lives.
Since the start of the COVID pandemic, social isolation, loneliness, and resulting mental health issues have only gotten worse. In light of this, it’s safe to say that hearing, sharing, and remembering stories isn’t just something we can do for entertainment. Storytelling has always been central to the human experience, and now more than ever it’s become something crucial for our survival.
Want to know how you can reap the benefits of hearing happy stories? Keep an eye out for Upworthy’s first book, GOOD PEOPLE: Stories from the Best of Humanity, published by National Geographic/Disney, available on September 3, 2024. GOOD PEOPLE is a much-needed trove of life-affirming stories told straight from the heart. Handpicked from Upworthy’s community, these 101 stories speak to the breadth, depth, and beauty of the human experience, reminding us we have a lot more in common than we realize.