The Top 8 Things to Know About Anti-Aging Research Right Now
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Dr. Michael West has a storied legacy in the world of aging research. Twenty years ago, the company he started, Geron, hit upon a major breakthrough when his scientists isolated the active component for the gene that confers immortality to cells, called telomerase.
In the twenty years since, a new field has emerged: the science of extending the human "healthspan."
He was in the lab when scientists for the first time artificially turned on the gene in some skin cells donated by Dr. Leonard Hayflick, the man who had discovered back in 1965 that human cells age over time. Sure enough, with Geron's intervention, Hayflick's skin cells became immortal in the dish, and the landmark paper was published in Science in 1998.
In the twenty years since, a new field has emerged: the science of extending the human "healthspan" – the length of time people can live free of diseases related to aging. A substantial amount of preclinical and some clinical research is now underway, backed by heavy investments from some of the world's largest companies.
Today, Dr. West is the CEO of AgeX Therapeutics, a biotech company that is developing novel therapeutics to target human aging and age-related degenerative diseases using pluripotent stem cells. Dr. West recently shared some key insights with Editor-in-Chief Kira Peikoff about what's happening in this exciting space.
1) Pluripotent stem cells have opened the door for the first time in human history to manufacturing young cells and young tissue of any kind.
These are the body's master cells: They are self-replicating, and they can potentially give rise to any cell or tissue the body needs to repair itself. This year marks the 20th anniversary since their isolation for the first time in a lab.
"People in biotech say that the time from lab to discovery in products is about 20 years," West says. "But the good news is we're at that 20-year mark now, so you're seeing an explosive growth of applications. We can now make all cell types of the human body in a scalable manner."
2) Early human development could hold the key to unlocking the mystery of aging.
West believes that two things occur when the body forms in utero: telomerase, the immortalizing gene, gets turned off very early in development in the body cells like skin, liver, and nerves. Additionally, he thinks that a second genetic switch gets turned off that holds the potential for regeneration after injury.
"These insights open the door to intervention by the transfer of telomerase into the cells of the body."
"Very early when the body is first forming, if you cut the skin, it will not respond by scarring, but will regenerate scarlessly," he says. "But that potential gets turned off once the body is formed, about 8 weeks after fertilization. Then, you accumulate damage over a lifetime. Not only do cells have a finite capacity to replicate, but you have tissue damage."
However, there are animals in nature whose telomerase is never turned off, or whose regenerative ability is never turned off. The flatworm, for example, can regenerate its own head if it gets cut off, and it also shows no detectable aging. Lobsters are believed to be similar. (That's not to say it can't get caught and eaten for dinner.)
"These insights open the door to intervention by the transfer of telomerase into the cells of the body, or understanding how regeneration gets turned off, and then turning it back on," West says. "That's well within the power of modern medical research to understand."
3) Companies are investing tremendous resources into the anti-aging gold rush.
Devising interventions is the mission of AgeX, a subsidiary of BioTime, as well as a number of other companies.
"We're seeing a mad rush," West says. There's Google's Calico, which recently announced, with AbbVie Inc., another $1 billion into research for age-related diseases, on top of the previous $1.5 billion investment.
Other notable players include Unity Biotechnology, Samumed, Human Longevity Inc., RestorBio, Rejuvenate Bio,and Juvenescence (which is also an investor in AgeX).
"These are products in development by our company and others that the baby boomers can reasonably anticipate being available within their lifetimes."
4) The majority of clinical applications are still years away.
"What we've learned about turning back on this regenerative state, called induced tissue regeneration, is that the majority of the clinical implications are years away and will require years of clinical trials before potential FDA approval and marketing to the public," West says. "But we have found some potential near-term applications that we think may have a much faster track to commercialization. As you can imagine, we are all over those."
BioTime, Inc., AgeX's parent, has a regenerative medicine product in clinical trials for age-related macular degeneration, the leading cause of blindness in an aging population. While not yet approved by the FDA, BioTime has reported continued progress in the clinical development of the product now in Phase II trials.
Dr. Michael West, CEO of AgeX
Citi recently issued a major report, Disruptive Innovations VI, that included "Anti-Aging Medicines" as the number two innovation for investors to keep an eye on, and predicted that the first anti-aging therapies could receive regulatory approval by 2023.
5) Few, if any, medical interventions are available today that are proven to markedly slow aging - yet. But the Baby Boomers are not necessarily out of luck.
Buyer beware of any claims in the marketplace that a given skin cream or stem cell product will extend your life. More than likely, they won't.
"There are a lot of people trying to cash in on the aging baby boom population," West warns.
"When you hear claims of stem cell products that you can get now, it's important to understand that they are likely not based on pluripotent stem cell technology. Also, they are usually not products approved by the FDA, having gone through clinical trials to demonstrate safety and efficacy."
However, an array of young pluripotent stem cell-derived therapies are on a development track for future approvals.
One example is another program at AgeX: the manufacture of brown fat cells; these cells burn calories rather than store them. They burn circulating fat like triglycerides and sugar in the blood and generate heat.
"You lose brown fat in aging, and animal models suggest that if you restore that tissue, you can restore a metabolic balance to be more like what you had when you were young," says West. "When I was 18, I could drink milkshakes all day long and not gain an ounce. But at 50 or 60, most of us would rapidly put on weight. Why? We believe that one important factor is that with age, you lose this brown fat tissue. The loss throws your metabolism off balance. So the solution is conceptually simple, we plan to make young brown fat cells for transplantation to reset the balance, potentially to treat Type II diabetes or even obesity.
"These are products in development by our company and others that the baby boomers can reasonably anticipate being available within their lifetimes."
6) There is an ethical debate about how far to apply this new science.
Some people are speculating about whether genetic engineering might one day be used to program longer lifespans into humans at the earliest stages of development. (Note: it is against the law across the Western world to edit human embryos intended for reproduction, although just last week, Chinese scientists used CRISPR to repair a disease-causing mutation in viable human embryos.)
West sounds a cautionary note about such interventions meant to lengthen life. "For people who think not just about the science, but the ethics, safety is a major concern. It's entirely possible to genetically engineer babies, but when you make such modifications, it's an experiment, not just in human cells in a dish, but in a human being. I have a great reticence to put any human at risk unless it's a case where the person is suffering with a life-threatening disease, and the potential therapy is their last best hope."
"I have no doubt, zero doubt, that in the foreseeable future, we'll hear of a person who has lived to about 150."
7) The biggest challenge of intervening in human aging is cultural denial.
"The prospect of intervening in a profound way in human aging is still not seen as credible by the vast majority of thoughtful people around the world," West laments.
"Aging is a universal phenomenon, it's mankind's greatest enemy, but as a species we've adapted to the realities of finite lifespans and death. We have a whole infrastructure of belief systems around this, and many people see it as inevitable."
8) The lifespan for healthy children born today could surpass anything humanity has ever seen.
"It is at least 150 years of age," West predicts. "I have no doubt, zero doubt, that in the foreseeable future, we'll hear of a person who has lived to about 150. We know now it's possible. I've never said that publicly before, but I am comfortable now with the prediction. And, of course, if some people now living could live to 150 years of age, we have the prospect of them living to see even more powerful therapies. So, the question now is, what kind of a world are we going to make for future generations?"
[Editor's Note: Check out our latest video, which was inspired by Dr. West's exclusive prediction to leapsmag.]
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
A sleek, four-foot tall white robot glides across a cafe storefront in Tokyo’s Nihonbashi district, holding a two-tiered serving tray full of tea sandwiches and pastries. The cafe’s patrons smile and say thanks as they take the tray—but it’s not the robot they’re thanking. Instead, the patrons are talking to the person controlling the robot—a restaurant employee who operates the avatar from the comfort of their home.
It’s a typical scene at DAWN, short for Diverse Avatar Working Network—a cafe that launched in Tokyo six years ago as an experimental pop-up and quickly became an overnight success. Today, the cafe is a permanent fixture in Nihonbashi, staffing roughly 60 remote workers who control the robots remotely and communicate to customers via a built-in microphone.
More than just a creative idea, however, DAWN is being hailed as a life-changing opportunity. The workers who control the robots remotely (known as “pilots”) all have disabilities that limit their ability to move around freely and travel outside their homes. Worldwide, an estimated 16 percent of the global population lives with a significant disability—and according to the World Health Organization, these disabilities give rise to other problems, such as exclusion from education, unemployment, and poverty.
These are all problems that Kentaro Yoshifuji, founder and CEO of Ory Laboratory, which supplies the robot servers at DAWN, is looking to correct. Yoshifuji, who was bedridden for several years in high school due to an undisclosed health problem, launched the company to help enable people who are house-bound or bedridden to more fully participate in society, as well as end the loneliness, isolation, and feelings of worthlessness that can sometimes go hand-in-hand with being disabled.
“It’s heartbreaking to think that [people with disabilities] feel they are a burden to society, or that they fear their families suffer by caring for them,” said Yoshifuji in an interview in 2020. “We are dedicating ourselves to providing workable, technology-based solutions. That is our purpose.”
Shota Kuwahara, a DAWN employee with muscular dystrophy. Ory Labs, Inc.
Wanting to connect with others and feel useful is a common sentiment that’s shared by the workers at DAWN. Marianne, a mother of two who lives near Mt. Fuji, Japan, is functionally disabled due to chronic pain and fatigue. Working at DAWN has allowed Marianne to provide for her family as well as help alleviate her loneliness and grief.Shota, Kuwahara, a DAWN employee with muscular dystrophy, agrees. "There are many difficulties in my daily life, but I believe my life has a purpose and is not being wasted," he says. "Being useful, able to help other people, even feeling needed by others, is so motivational."
When a patient is diagnosed with early-stage breast cancer, having surgery to remove the tumor is considered the standard of care. But what happens when a patient can’t have surgery?
Whether it’s due to high blood pressure, advanced age, heart issues, or other reasons, some breast cancer patients don’t qualify for a lumpectomy—one of the most common treatment options for early-stage breast cancer. A lumpectomy surgically removes the tumor while keeping the patient’s breast intact, while a mastectomy removes the entire breast and nearby lymph nodes.
Fortunately, a new technique called cryoablation is now available for breast cancer patients who either aren’t candidates for surgery or don’t feel comfortable undergoing a surgical procedure. With cryoablation, doctors use an ultrasound or CT scan to locate any tumors inside the patient’s breast. They then insert small, needle-like probes into the patient's breast which create an “ice ball” that surrounds the tumor and kills the cancer cells.
Cryoablation has been used for decades to treat cancers of the kidneys and liver—but only in the past few years have doctors been able to use the procedure to treat breast cancer patients. And while clinical trials have shown that cryoablation works for tumors smaller than 1.5 centimeters, a recent clinical trial at Memorial Sloan Kettering Cancer Center in New York has shown that it can work for larger tumors, too.
In this study, doctors performed cryoablation on patients whose tumors were, on average, 2.5 centimeters. The cryoablation procedure lasted for about 30 minutes, and patients were able to go home on the same day following treatment. Doctors then followed up with the patients after 16 months. In the follow-up, doctors found the recurrence rate for tumors after using cryoablation was only 10 percent.
For patients who don’t qualify for surgery, radiation and hormonal therapy is typically used to treat tumors. However, said Yolanda Brice, M.D., an interventional radiologist at Memorial Sloan Kettering Cancer Center, “when treated with only radiation and hormonal therapy, the tumors will eventually return.” Cryotherapy, Brice said, could be a more effective way to treat cancer for patients who can’t have surgery.
“The fact that we only saw a 10 percent recurrence rate in our study is incredibly promising,” she said.