The Top Five Mysteries of the Human Gut Microbiome
A scholar of science, circa 2218, might look back on this era and wonder why, all of a sudden, scientists became so obsessed with human stool. Or more accurately, the microorganisms therein.
Although every human is nearly identical genetically, each person carries around a massively different variety of microbial genes from bacteria, fungi, viruses, and archaea.
This scholar might find, for example, the seven-fold increase in PubMed articles on "gut microbiome" in the half-decade between 2012 and 2017; the plastic detritus of millions of fecal sample collection kits, and evidence that freezers in research labs worldwide had filled up with fecal samples. What's happened?
Human genome science has led to some important medical insights over time. Now it's moving over for the microorganisms. Because, although every human is nearly identical genetically, each person carries around a massively different variety of microbial genes from bacteria, fungi, viruses, and archaea—genes that are collectively called the microbiome.
Thinking that more knowledge about the gut microbiome is going to solve every problem in medicine is pure hubris. And yet these microorganisms seem to be at the nexus of humans and our environment, capable of changing us metabolically and adjusting our immune systems. What might they have the power to do?
Here are five of the most important questions that lie ahead for microbiome science.
1) What makes a gut microbiome 'healthy'?
The words "healthy microbiome" should raise a red flag. Because, currently, if scientists examine the gut microbial community of a single individual they have no way of knowing whether or not it qualifies as healthy—nor even what parameter to look at in order to find out. Is it only the names of the bugs that matter, or is it their diversity? Alternatively, is it function—what they're genetically equipped to do?
The words "healthy microbiome" should raise a red flag.
The focused efforts of the Human Microbiome Project were supposed to accomplish the apparently simple task of defining a healthy microbiome, but no clear answers emerged. If researchers could identify the parameters of a healthy microbiota per se, they might have a way to know whether manipulations—from probiotics to fecal transplant—were making a difference that could lead to a good health outcome.
2) Diet can manipulate gut microbes. How does this affect health?
"Many kinds of bacteria in our gut, they're changeable by changing our diet," says Liping Zhao of Shanghai Jiao Tong University in China, citing two large population studies from 2016. What's murkier is how this effects a change in health status.
Zhao's research focuses on making the three-way link between diet, gut microbiota, and health outcome. Meanwhile, researchers like Genelle Healey at the University of British Columbia (UBC) are working to track how the gut microbiome and health respond to a dietary intervention in a personalized way.
Knowing how the diet-induced changes in gut microbes affected health in the long term would allow every individual to toss out the diet books and figure out a dietary pattern—probably as personal as their gut microbes—that would result in their best health down the line.
If scientists could find how to harness one or more microorganisms to have specific effects on the immune system, they might be able to crack a new class of therapeutics.
3) How can gut microorganisms be used to fine-tune the immune system?
Many chronic diseases—autoimmune conditions but also, according to the latest research, obesity and cardiovascular disease—are immune mediated. Kenya Honda of Keio University School of Medicine in Tokyo, Yasmine Belkaid of the US National Institutes of Health (NIH), June Round at University of Utah, and many other researchers are chasing the ways in which gut microbes 'talk' to the immune system. But it's more than just studying certain bugs.
"It's an incredibly complex situation and we can't just label bugs as pro-inflammatory or anti-inflammatory. It's very context-dependent," says Justin Sonnenburg of Stanford. But if scientists could find how to harness a microorganism or group of them to have specific effects on the immune system, they might be able to crack a new class of therapeutics that could change the course of immune-mediated diseases.
4) How can a person's gut microbiome be reconfigured in a lasting way?
Measures of the adult microbiome over time show it has a high degree of stability—in fact, it can be downright stubborn. But a new, stable gut microbial ecology can be achieved when someone receives a fecal transplant for recurrent C. difficile infection. Work by Eric Alm of Massachusetts Institute of Technology (MIT) and others have shown the recipient's gut microbiota ends up looking more like the donor's, with engraftment of particular strains.
But what are the microorganisms' 'rules of engraftment'? Knowing this, it might be possible to intervene in a number of disease-associated microbiome states, changing them in a way that changed the course of the disease.
Is the infant microbiome, as shaped by birth mode and diet, responsible for health issues later in life?
5) How do early-life shapers of the gut microbiome affect health status later on?
Researchers have found two main factors that appear to shape the gut microbiome in early life, at least temporarily: mode of birth (whether vaginal or Cesarean section), and early life diet (whether formula or breast milk). These same factors are associated with an increased risk of immune and metabolic diseases. So is the infant microbiome, as shaped by birth mode and diet, responsible for health issues later in life?
Brett Finlay of the University of British Columbia has made these 'hygiene hypothesis' compatible links between the absence of certain bacteria in early life and asthma later on. "I think the bugs are shaping and pushing how our immune system develops, and if very early in life you don't have those things, it goes to a more allergic-type immune system. If you do have those bugs it gets pushed towards more normal," he says. The work could lead to targeted manipulation of the microbiome in early life to offset negative health effects.
Few things are more painful than a urinary tract infection (UTI). Common in men and women, these infections account for more than 8 million trips to the doctor each year and can cause an array of uncomfortable symptoms, from a burning feeling during urination to fever, vomiting, and chills. For an unlucky few, UTIs can be chronic—meaning that, despite treatment, they just keep coming back.
But new research, presented at the European Association of Urology (EAU) Congress in Paris this week, brings some hope to people who suffer from UTIs.
Clinicians from the Royal Berkshire Hospital presented the results of a long-term, nine-year clinical trial where 89 men and women who suffered from recurrent UTIs were given an oral vaccine called MV140, designed to prevent the infections. Every day for three months, the participants were given two sprays of the vaccine (flavored to taste like pineapple) and then followed over the course of nine years. Clinicians analyzed medical records and asked the study participants about symptoms to check whether any experienced UTIs or had any adverse reactions from taking the vaccine.
The results showed that across nine years, 48 of the participants (about 54%) remained completely infection-free. On average, the study participants remained infection free for 54.7 months—four and a half years.
“While we need to be pragmatic, this vaccine is a potential breakthrough in preventing UTIs and could offer a safe and effective alternative to conventional treatments,” said Gernot Bonita, Professor of Urology at the Alta Bro Medical Centre for Urology in Switzerland, who is also the EAU Chairman of Guidelines on Urological Infections.
The news comes as a relief not only for people who suffer chronic UTIs, but also to doctors who have seen an uptick in antibiotic-resistant UTIs in the past several years. Because UTIs usually require antibiotics, patients run the risk of developing a resistance to the antibiotics, making infections more difficult to treat. A preventative vaccine could mean less infections, less antibiotics, and less drug resistance overall.
“Many of our participants told us that having the vaccine restored their quality of life,” said Dr. Bob Yang, Consultant Urologist at the Royal Berkshire NHS Foundation Trust, who helped lead the research. “While we’re yet to look at the effect of this vaccine in different patient groups, this follow-up data suggests it could be a game-changer for UTI prevention if it’s offered widely, reducing the need for antibiotic treatments.”
MILESTONE: Doctors have transplanted a pig organ into a human for the first time in history
Surgeons at Massachusetts General Hospital made history last week when they successfully transplanted a pig kidney into a human patient for the first time ever.
The recipient was a 62-year-old man named Richard Slayman who had been living with end-stage kidney disease caused by diabetes. While Slayman had received a kidney transplant in 2018 from a human donor, his diabetes ultimately caused the kidney to fail less than five years after the transplant. Slayman had undergone dialysis ever since—a procedure that uses an artificial kidney to remove waste products from a person’s blood when the kidneys are unable to—but the dialysis frequently caused blood clots and other complications that landed him in the hospital multiple times.
As a last resort, Slayman’s kidney specialist suggested a transplant using a pig kidney provided by eGenesis, a pharmaceutical company based in Cambridge, Mass. The highly experimental surgery was made possible with the Food and Drug Administration’s “compassionate use” initiative, which allows patients with life-threatening medical conditions access to experimental treatments.
The new frontier of organ donation
Like Slayman, more than 100,000 people are currently on the national organ transplant waiting list, and roughly 17 people die every day waiting for an available organ. To make up for the shortage of human organs, scientists have been experimenting for the past several decades with using organs from animals such as pigs—a new field of medicine known as xenotransplantation. But putting an animal organ into a human body is much more complicated than it might appear, experts say.
“The human immune system reacts incredibly violently to a pig organ, much more so than a human organ,” said Dr. Joren Madsen, director of the Mass General Transplant Center. Even with immunosuppressant drugs that suppress the body’s ability to reject the transplant organ, Madsen said, a human body would reject an animal organ “within minutes.”
So scientists have had to use gene-editing technology to change the animal organs so that they would work inside a human body. The pig kidney in Slayman’s surgery, for instance, had been genetically altered using CRISPR-Cas9 technology to remove harmful pig genes and add human ones. The kidney was also edited to remove pig viruses that could potentially infect a human after transplant.
With CRISPR technology, scientists have been able to prove that interspecies organ transplants are not only possible, but may be able to successfully work long term, too. In the past several years, scientists were able to transplant a pig kidney into a monkey and have the monkey survive for more than two years. More recently, doctors have transplanted pig hearts into human beings—though each recipient of a pig heart only managed to live a couple of months after the transplant. In one of the patients, researchers noted evidence of a pig virus in the man’s heart that had not been identified before the surgery and could be a possible explanation for his heart failure.
So far, so good
Slayman and his medical team ultimately decided to pursue the surgery—and the risk paid off. When the pig organ started producing urine at the end of the four-hour surgery, the entire operating room erupted in applause.
Slayman is currently receiving an infusion of immunosuppressant drugs to prevent the kidney from being rejected, while his doctors monitor the kidney’s function with frequent ultrasounds. Slayman is reported to be “recovering well” at Massachusetts General Hospital and is expected to be discharged within the next several days.