To Make Science Engaging, We Need a Sesame Street for Adults
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
In the mid-1960s, a documentary producer in New York City wondered if the addictive jingles, clever visuals, slogans, and repetition of television ads—the ones that were captivating young children of the time—could be harnessed for good. Over the course of three months, she interviewed educators, psychologists, and artists, and the result was a bonanza of ideas.
Perhaps a new TV show could teach children letters and numbers in short animated sequences? Perhaps adults and children could read together with puppets providing comic relief and prompting interaction from the audience? And because it would be broadcast through a device already in almost every home, perhaps this show could reach across socioeconomic divides and close an early education gap?
Soon after Joan Ganz Cooney shared her landmark report, "The Potential Uses of Television in Preschool Education," in 1966, she was prototyping show ideas, attracting funding from The Carnegie Corporation, The Ford Foundation, and The Corporation for Public Broadcasting, and co-founding the Children's Television Workshop with psychologist Lloyd Morrisett. And then, on November 10, 1969, informal learning was transformed forever with the premiere of Sesame Street on public television.
For its first season, Sesame Street won three Emmy Awards and a Peabody Award. Its star, Big Bird, landed on the cover of Time Magazine, which called the show "TV's gift to children." Fifty years later, it's hard to imagine an approach to informal preschool learning that isn't Sesame Street.
And that approach can be boiled down to one word: Entertainment.
Despite decades of evidence from Sesame Street—one of the most studied television shows of all time—and more research from social science, psychology, and media communications, we haven't yet taken Ganz Cooney's concepts to heart in educating adults. Adults have news programs and documentaries and educational YouTube channels, but no Sesame Street. So why don't we? Here's how we can design a new kind of television to make science engaging and accessible for a public that is all too often intimidated by it.
We have to start from the realization that America is a nation of high-school graduates. By the end of high school, students have decided to abandon science because they think it's too difficult, and as a nation, we've made it acceptable for any one of us to say "I'm not good at science" and offload thinking to the ones who might be. So, is it surprising that a large number of Americans are likely to believe in conspiracy theories like the 25% that believe the release of COVID-19 was planned, the one in ten who believe the Moon landing was a hoax, or the 30–40% that think the condensation trails of planes are actually nefarious chemtrails? If we're meeting people where they are, the aim can't be to get the audience from an A to an A+, but from an F to a D, and without judgment of where they are starting from.
There's also a natural compulsion for a well-meaning educator to fill a literacy gap with a barrage of information, but this is what I call "factsplaining," and we know it doesn't work. And worse, it can backfire. In one study from 2014, parents were provided with factual information about vaccine safety, and it was the group that was already the most averse to vaccines that uniquely became even more averse.
Why? Our social identities and cognitive biases are stubborn gatekeepers when it comes to processing new information. We filter ideas through pre-existing beliefs—our values, our religions, our political ideologies. Incongruent ideas are rejected. Congruent ideas, no matter how absurd, are allowed through. We hear what we want to hear, and then our brains justify the input by creating narratives that preserve our identities. Even when we have all the facts, we can use them to support any worldview.
But social science has revealed many mechanisms for hijacking these processes through narrative storytelling, and this can form the foundation of a new kind of educational television.
Could new television series establish the baseline narratives for novel science like gene editing, quantum computing, or artificial intelligence?
As media creators, we can reject factsplaining and instead construct entertaining narratives that disrupt cognitive processes. Two-decade-old research tells us when people are immersed in entertaining fiction narratives, they loosen their defenses, opening a path for new information, editing attitudes, and inspiring new behavior. Where news about hot-button issues like climate change or vaccination might trigger resistance or a backfire effect, fiction can be crafted to be absorbing and, as a result, persuasive.
But the narratives can't be stuffed with information. They must be simplified. If this feels like the opposite of what an educator should be doing, it is possible to reduce the complexity of information, without oversimplification, through "exemplification," a framing device to tell the stories of individuals in specific circumstances that can speak to the greater issue without needing to explain it all. It's a technique you've seen used in biopics. The Discovery Channel true-crime miniseries Manhunt: Unabomber does many things well from a science storytelling perspective, including exemplifying the virtues of the scientific method through a character who argues for a new field of science, forensic linguistics, to catch one of the most notorious domestic terrorists in U.S. history.
We must also appeal to the audience's curiosity. We know curiosity is such a strong driver of human behavior that it can even counteract the biases put up by one's political ideology around subjects like climate change. If we treat science information like a product—and we should—advertising research tells us we can maximize curiosity though a Goldilocks effect. If the information is too complex, your show might as well be a PowerPoint presentation. If it's too simple, it's Sesame Street. There's a sweet spot for creating intrigue about new information when there's a moderate cognitive gap.
The science of "identification" tells us that the more the main character is endearing to a viewer, the more likely the viewer will adopt the character's worldview and journey of change. This insight further provides incentives to craft characters reflective of our audiences. If we accept our biases for what they are, we can understand why the messenger becomes more important than the message, because, without an appropriate messenger, the message becomes faint and ineffective. And research confirms that the stereotype-busting doctor-skeptic Dana Scully of The X-Files, a popular science-fiction series, was an inspiration for a generation of women who pursued science careers.
With these directions, we can start making a new kind of television. But is television itself still the right delivery medium? Americans do spend six hours per day—a quarter of their lives—watching video. And even with the rise of social media and apps, science-themed television shows remain popular, with four out of five adults reporting that they watch shows about science at least sometimes. CBS's The Big Bang Theory was the most-watched show on television in the 2017–2018 season, and Cartoon Network's Rick & Morty is the most popular comedy series among millennials. And medical and forensic dramas continue to be broadcast staples. So yes, it's as true today as it was in the 1980s when George Gerbner, the "cultivation theory" researcher who studied the long-term impacts of television images, wrote, "a single episode on primetime television can reach more people than all science and technology promotional efforts put together."
We know from cultivation theory that media images can shape our views of scientists. Quick, picture a scientist! Was it an old, white man with wild hair in a lab coat? If most Americans don't encounter research science firsthand, it's media that dictates how we perceive science and scientists. Characters like Sheldon Cooper and Rick Sanchez become the model. But we can correct that by representing professionals more accurately on-screen and writing characters more like Dana Scully.
Could new television series establish the baseline narratives for novel science like gene editing, quantum computing, or artificial intelligence? Or could new series counter the misinfodemics surrounding COVID-19 and vaccines through more compelling, corrective narratives? Social science has given us a blueprint suggesting they could. Binge-watching a show like the surreal NBC sitcom The Good Place doesn't replace a Ph.D. in philosophy, but its use of humor plants the seed of continued interest in a new subject. The goal of persuasive entertainment isn't to replace formal education, but it can inspire, shift attitudes, increase confidence in the knowledge of complex issues, and otherwise prime viewers for continued learning.
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
Pregnant and Breastfeeding Women Might Have a New Reason to Ditch Artificial Sweeteners
Women considering pregnancy might have another reason to drop artificial sweeteners from their diet, if a new study of mice proves to apply to humans as well. It highlights "yet another potential health impact of zero-calorie sweeteners," according to lead author Stephanie Olivier-Van Stichelen.
The discovery was serendipitous, not part of the original study.
It found that commonly used artificial sweeteners consumed by female mice transfer to pups in the womb and later through milk, harming their development. The sweeteners affected the composition of bacteria in the gut of the pups, making them more vulnerable to developing diabetes, and greatly reduced the liver's capacity to neutralize toxins.
The discovery was serendipitous, not part of the original study, says John Hanover, the senior author and a cell biologist at the NIH National Institute of Diabetes and Digestive and Kidney Diseases. The main study looked at how a high sugar diet in the mother turns genes on and off in the developing offspring.
It compared them with mothers fed a low sugar diet, replacing sugar with a mix of sucralose and acesulfame-K (AK), two non-nutrient artificial sugars that are already used extensively in our food products and thought to be safe.
While the artificial sweeteners had little effect on the mothers, the trace amounts that were transferred through the placenta and milk had a profound effect on the pups. Hanover believes the molecules are changing gene expression during a crucial, short period of development.
"Somewhat to our surprise, we saw in the pups a really dramatic change in the microbiome" of those whose mothers were fed the artificial sweeteners, Hanover told leapsmag. "It looked like the neonates were much, much more sensitive than their mothers to the sucralose and AK." The unexpected discovery led them to publish a separate paper.
"The protective microbe Akkermansia was largely missing, and we saw a pretty dramatic shift in the ratio of two bacteria that are normally associated with metabolic disease," a precursor to diabetes, he explains. Akkermansia is a bacteria that feeds on mucus in the gut and helps remodel the tissue to an adult state over the first several months of life in a mouse. A similar process takes several years in humans, as the infant is weaned off of breast milk as the primary food source.
The good news is the body seems to remove these artificial sweeteners fairly quickly, probably within a week.
Another problem the researchers saw in the animals was "a particularly striking change in the metabolism of the detoxification systems" in the liver, says Hanover. A healthy liver is dark red, but a high dose of the artificial sweeteners turned it white, "which is a sign of massive problems."
The study was conducted in mice and Hanover cautions the findings may not apply to humans. "But in general, the microbiome changes that one sees in the rodent model mimics what we see in humans...[and] the genes that are turned on in the mouse and the human are very similar."
Hanover acknowledges the quantity of artificial sweeteners used in the study is on the high end of human consumption, roughly the equivalent of 20 cans of diet soda a day. But the sweeteners are so ubiquitous in consumer products, from foods to lipstick, and often not even mentioned on the label, that it is difficult to measure just how much a person consumes every day.
The good news is the body seems to remove these artificial sweeteners fairly quickly, probably within a week. Until further studies provide a clearer picture, women who want to err on the side of caution can choose to reduce if not eliminate their exposure to artificial sweeteners during pregnancy and breastfeeding.
NASA Has the Technology to Save Us From an Asteroid Strike, But Congress Won’t Fund It
At the biannual Planetary Defense Conference earlier this year, NASA ran a simulation of an asteroid slamming into the center of Manhattan.
For several millennia now, we've been lucky, but our luck won't hold out forever.
The gathering of astronomers, planetary scientists, and FEMA disaster-response experts attempted a number of interventions that might be possible within a time window of eight years, the given warning period before impact.
Catastrophic asteroid crashes are not without precedent, and scientists say it's only a matter of time before another one occurs—that is, if we do nothing to prevent it. It's believed that a huge asteroid crash off the coast of Mexico's Yucatan Peninsula created a worldwide disaster that helped to speed the extinction of the dinosaurs 65 million years ago.
In 1908, a meteoroid less than 300 feet in diameter exploded in the air over the Tunguska region of Siberia, creating a shockwave that leveled trees for hundreds of square miles. It's a matter of sheer luck it didn't hit a major population center, where human casualties could have been enormous.
For several millennia now, we've been lucky, but our luck won't hold out forever. There are millions of asteroids circulating about in our solar system, some of them hundreds of miles across, and although the odds of a massive one crashing to Earth in the near future is statistically low, the devastation could be apocalyptic.
Back at the conference, the experts tried sending several spacecrafts to knock the asteroid off-course by slamming into it. They considered blasting it with nuclear weapons. They even considered painting it white so it absorbed less of the sun's energy, hoping that would shift the asteroid's trajectory. In the simulations, all of the interventions failed and the giant space rock crashed into Manhattan, killing 1.3 million people in a massive explosion that was 1,000 times more powerful than the Hiroshima bomb.
NEOCam is designed, tested, and ready to build, but the project is currently frozen because of a $40 million gap in NASA funding.
Given more time, the scientists said, they might have succeeded in preventing the disaster. However, with today's asteroid-hunting telescopes, it's not likely we would have more warning. Our current telescopes are not powerful enough to detect all the near-earth asteroids, nor are they positioned well enough for sufficient detection. As recently as last week, for example, an asteroid traveling 15 miles a second narrowly missed crashing into the Earth, and it was only noticed several days in advance.
Now for the good news: There is a new technology that could buy us the time we need, says MIT planetary sciences professor Richard P. Binzel and colleagues who attended the conference. The Near-Earth Object Camera, or NEOCam, designed by NASA's Jet Propulsion Laboratory, would detect more than 90 percent of nearby objects that are 420 feet across or larger, according to Binzel.
The powerful infrared telescope is designed to sit within the L1 Lagrange point, a stable location in space where the gravitational pulls of the Earth and the sun cancel each other out. From there, large space bodies could be detected early enough to give scientists decades of warning when an asteroid is heading for Earth. NEOCam is designed, tested, and ready to build, but the project is currently frozen because of a $40 million gap in NASA funding.
The status of NEOCam, according to Binzel, is a case-study in short-sightedness and a lack of leadership. Congress needs to raise NASA's Planetary Defense budget from its current $160 million to $200 million to get the telescope built and launched into space, a goal that would seem eminently doable within the strictures of 2020's $4.75 trillion government budget. But Binzel describes a current deadlock between NASA, Congress, and the Office of Management and Budget as a "cosmic game of chicken."
If we don't use our technology to defend the planet, "it would be the most epic failure in the history of science."
In an excruciatingly budget-conscious atmosphere, "No one wants to stick their neck out and take adult responsibility" for getting the funding allocated that would unfreeze the project, says Binzel. But, he adds, "We have a moral obligation to act."
NEOCam would not only spot the overwhelming majority of asteroids in Earth's vicinity, it would determine their size and pinpoint exactly where they are likely to strike the Earth. And it would allow us decades to act, according to Binzel. Repeated ramming by an international armada of specialized spacecraft could slightly change the trajectory of an asteroid, he says. Changing the trajectory only a tiny bit, given the scale of millions of miles and several decades for the course change to take effect, could cause an asteroid to miss the Earth altogether.
"So far we've been relying on luck," says Binzel, "but luck is not a plan." Now that we have the technology to discover what's careening through our space neighborhood, it's our ethical duty to deploy it. If we don't use our technology to gain the knowledge we need to defend the planet, Binzel concludes, "it would be the most epic failure in the history of science."
Should Congress green light the $40 million budget for the new asteroid-hunting telescope? @NASA #NASA #astroid— leapsmag (@leapsmag) 1564681293.0