To Make Science Engaging, We Need a Sesame Street for Adults
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
In the mid-1960s, a documentary producer in New York City wondered if the addictive jingles, clever visuals, slogans, and repetition of television ads—the ones that were captivating young children of the time—could be harnessed for good. Over the course of three months, she interviewed educators, psychologists, and artists, and the result was a bonanza of ideas.
Perhaps a new TV show could teach children letters and numbers in short animated sequences? Perhaps adults and children could read together with puppets providing comic relief and prompting interaction from the audience? And because it would be broadcast through a device already in almost every home, perhaps this show could reach across socioeconomic divides and close an early education gap?
Soon after Joan Ganz Cooney shared her landmark report, "The Potential Uses of Television in Preschool Education," in 1966, she was prototyping show ideas, attracting funding from The Carnegie Corporation, The Ford Foundation, and The Corporation for Public Broadcasting, and co-founding the Children's Television Workshop with psychologist Lloyd Morrisett. And then, on November 10, 1969, informal learning was transformed forever with the premiere of Sesame Street on public television.
For its first season, Sesame Street won three Emmy Awards and a Peabody Award. Its star, Big Bird, landed on the cover of Time Magazine, which called the show "TV's gift to children." Fifty years later, it's hard to imagine an approach to informal preschool learning that isn't Sesame Street.
And that approach can be boiled down to one word: Entertainment.
Despite decades of evidence from Sesame Street—one of the most studied television shows of all time—and more research from social science, psychology, and media communications, we haven't yet taken Ganz Cooney's concepts to heart in educating adults. Adults have news programs and documentaries and educational YouTube channels, but no Sesame Street. So why don't we? Here's how we can design a new kind of television to make science engaging and accessible for a public that is all too often intimidated by it.
We have to start from the realization that America is a nation of high-school graduates. By the end of high school, students have decided to abandon science because they think it's too difficult, and as a nation, we've made it acceptable for any one of us to say "I'm not good at science" and offload thinking to the ones who might be. So, is it surprising that a large number of Americans are likely to believe in conspiracy theories like the 25% that believe the release of COVID-19 was planned, the one in ten who believe the Moon landing was a hoax, or the 30–40% that think the condensation trails of planes are actually nefarious chemtrails? If we're meeting people where they are, the aim can't be to get the audience from an A to an A+, but from an F to a D, and without judgment of where they are starting from.
There's also a natural compulsion for a well-meaning educator to fill a literacy gap with a barrage of information, but this is what I call "factsplaining," and we know it doesn't work. And worse, it can backfire. In one study from 2014, parents were provided with factual information about vaccine safety, and it was the group that was already the most averse to vaccines that uniquely became even more averse.
Why? Our social identities and cognitive biases are stubborn gatekeepers when it comes to processing new information. We filter ideas through pre-existing beliefs—our values, our religions, our political ideologies. Incongruent ideas are rejected. Congruent ideas, no matter how absurd, are allowed through. We hear what we want to hear, and then our brains justify the input by creating narratives that preserve our identities. Even when we have all the facts, we can use them to support any worldview.
But social science has revealed many mechanisms for hijacking these processes through narrative storytelling, and this can form the foundation of a new kind of educational television.
Could new television series establish the baseline narratives for novel science like gene editing, quantum computing, or artificial intelligence?
As media creators, we can reject factsplaining and instead construct entertaining narratives that disrupt cognitive processes. Two-decade-old research tells us when people are immersed in entertaining fiction narratives, they loosen their defenses, opening a path for new information, editing attitudes, and inspiring new behavior. Where news about hot-button issues like climate change or vaccination might trigger resistance or a backfire effect, fiction can be crafted to be absorbing and, as a result, persuasive.
But the narratives can't be stuffed with information. They must be simplified. If this feels like the opposite of what an educator should be doing, it is possible to reduce the complexity of information, without oversimplification, through "exemplification," a framing device to tell the stories of individuals in specific circumstances that can speak to the greater issue without needing to explain it all. It's a technique you've seen used in biopics. The Discovery Channel true-crime miniseries Manhunt: Unabomber does many things well from a science storytelling perspective, including exemplifying the virtues of the scientific method through a character who argues for a new field of science, forensic linguistics, to catch one of the most notorious domestic terrorists in U.S. history.
We must also appeal to the audience's curiosity. We know curiosity is such a strong driver of human behavior that it can even counteract the biases put up by one's political ideology around subjects like climate change. If we treat science information like a product—and we should—advertising research tells us we can maximize curiosity though a Goldilocks effect. If the information is too complex, your show might as well be a PowerPoint presentation. If it's too simple, it's Sesame Street. There's a sweet spot for creating intrigue about new information when there's a moderate cognitive gap.
The science of "identification" tells us that the more the main character is endearing to a viewer, the more likely the viewer will adopt the character's worldview and journey of change. This insight further provides incentives to craft characters reflective of our audiences. If we accept our biases for what they are, we can understand why the messenger becomes more important than the message, because, without an appropriate messenger, the message becomes faint and ineffective. And research confirms that the stereotype-busting doctor-skeptic Dana Scully of The X-Files, a popular science-fiction series, was an inspiration for a generation of women who pursued science careers.
With these directions, we can start making a new kind of television. But is television itself still the right delivery medium? Americans do spend six hours per day—a quarter of their lives—watching video. And even with the rise of social media and apps, science-themed television shows remain popular, with four out of five adults reporting that they watch shows about science at least sometimes. CBS's The Big Bang Theory was the most-watched show on television in the 2017–2018 season, and Cartoon Network's Rick & Morty is the most popular comedy series among millennials. And medical and forensic dramas continue to be broadcast staples. So yes, it's as true today as it was in the 1980s when George Gerbner, the "cultivation theory" researcher who studied the long-term impacts of television images, wrote, "a single episode on primetime television can reach more people than all science and technology promotional efforts put together."
We know from cultivation theory that media images can shape our views of scientists. Quick, picture a scientist! Was it an old, white man with wild hair in a lab coat? If most Americans don't encounter research science firsthand, it's media that dictates how we perceive science and scientists. Characters like Sheldon Cooper and Rick Sanchez become the model. But we can correct that by representing professionals more accurately on-screen and writing characters more like Dana Scully.
Could new television series establish the baseline narratives for novel science like gene editing, quantum computing, or artificial intelligence? Or could new series counter the misinfodemics surrounding COVID-19 and vaccines through more compelling, corrective narratives? Social science has given us a blueprint suggesting they could. Binge-watching a show like the surreal NBC sitcom The Good Place doesn't replace a Ph.D. in philosophy, but its use of humor plants the seed of continued interest in a new subject. The goal of persuasive entertainment isn't to replace formal education, but it can inspire, shift attitudes, increase confidence in the knowledge of complex issues, and otherwise prime viewers for continued learning.
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
Not Vaccinating Your Kids Endangers Public Health
[Editor's Note: This opinion essay is in response to our current Big Question, which we posed to experts with different viewpoints: "Where should society draw the line between requiring vaccinations for children and allowing parental freedom of choice?"]
Society has a right and at times an obligation to require children to be vaccinated. Vaccines are one of the most effective medical and public health interventions. They save lives and prevent suffering. The vast majority of parents in the United States fully vaccinate their children according to the recommended immunization schedule. These parents are making decisions so that the interests of their children and the interest of society are the same. There are no ethical tensions.
"Measles is only a plane ride away from American children."
A strong scientific basis supports the recommended immunization schedule. The benefits of recommended vaccines are much bigger than the risks. However, a very small proportion of parents are ideologically opposed to vaccines. A slightly larger minority of parents do not believe that all of the recommended vaccines are in their child's best interests.
Forgoing vaccinations creates risk to the child of contracting diseases. It also creates risk to communities and vulnerable groups of people who cannot be vaccinated because of their age or health status.
For example, many vaccines are not able to be given to newborns, such as the measles vaccine which is recommended at 12-15 months of age, leaving young children vulnerable. Many diseases are particularly dangerous for young children. There are also some children who can't be vaccinated, such as pediatric cancer patients who are undergoing chemotherapy or radiation treatment. These children are at increased risk of serous complication or death.
Then there are people who are vaccinated but remain susceptible to disease because no vaccine is 100% effective. In the case of measles, two doses of vaccines protect 97% of people, leaving 3% still susceptible even after being fully vaccinated. All of these groups of people – too young, not eligible, and vaccinated but still susceptible – are dependent on almost everyone else to get vaccinated in order for them to be protected.
Sadly, even though measles has been largely controlled because most people get the very safe and very effective vaccine, we are now seeing dangerous new outbreaks because some parents are refusing vaccines for their children, especially in Europe. Children have died. Measles is only a plane ride away from American children.
There have been repeated measles outbreaks in the United States – such as the Disneyland outbreak and six outbreaks already this year - because of communities where too many parents refuse the vaccine and measles is brought over, often from Europe.
The public health benefits cannot be emphasized enough: Vaccines are not just about protecting your child. Vaccines protect other children and the entire community. Vaccine-preventable diseases (with the exception of tetanus) are spread from person to person. The decision of a parent to not vaccinate their child can endanger other children and vulnerable people.
As a vaccine safety researcher for 20 years, I believe that the community benefit of vaccination can provide justification to limit parental autonomy.
Given these tensions between parental autonomy and the protective value of vaccines, the fundamental question remains: Should society require all children to submit to vaccinations? As a vaccine safety researcher for 20 years, I believe that the community benefit of vaccination can provide justification to limit parental autonomy.
In the United States, we see this balancing act though state requirements for vaccinations to enter school and the varying availability of non-medical exemptions to these laws. Mandatory vaccination in the United States are all state laws. All states require children entering school to receive vaccines and permit medical exemptions. There are a lot of differences between states regarding which vaccines are required, target populations (daycare, school entry, middle school, college), and existence and types of non-medical (religious or philosophical) exemptions that are permitted.
Amid recent measles outbreaks, for instance, California eliminated all non-medical exemptions, making it one of three states that only permit medical exemptions. The existence and enforcement of these school laws reflect broad public support for vaccines to protect the community from disease outbreaks.
I worry about how many kids must suffer, and even die, from diseases like measles until enough is enough. Such tragedies have no place in the modern era. All parents want to do right by their children. All parents deserve autonomy when it comes to decision-making. But when their choices confer serious risks to others, the buck should stop. Our nation would be better off—both medically and ethically—if we did not turn our backs on our most vulnerable individuals.
[Editor's Note: Read the opposite viewpoint here.]
Your Body Has This Astonishing Magical Power
It's vacation time. You and your family visit a country where you've never been and, in fact, your parents or grandparents had never been. You find yourself hiking beside a beautiful lake. It's a gorgeous day. You dive in. You are not alone.
How can your T cells and B cells react to a pathogen they've never seen?
In the water swim parasites, perhaps a parasite called giardia. The invader slips in through your mouth or your urinary tract. This bug is entirely new to you, and there's more. It might be new to everyone you've ever met or come into contact with. The parasite may have evolved in this setting for hundreds of thousands of years so that it's different from any giardia bug you've ever come into contact with before or that thrives in the region where you live.
How can your T cells and B cells react to a pathogen they've never seen, never knew existed, and were never inoculated against, and that you, or your doctors, in all their wisdom, could never have foreseen?
This is the infinity problem.
For years, this was the greatest mystery in immunology.
As I reported An Elegant Defense -- my book about the science of the immune system told through the lives of scientists and medical patients -- I was repeatedly struck by the profundity of this question. It is hard to overstate: how can we survive in a world with such myriad possible threats?
Matt Richtel's new book about the science of the immune system, An Elegant Defense, was published this month.
To further underscore the quandary, the immune system has to neutralize threats without killing the rest of the body. If the immune system could just kill the rest of the body too, the solution to the problem would be easy. Nuke the whole party. That obviously won't work if we are to survive. So the immune system has to be specific to the threat while also leaving most of our organism largely alone.
"God had two options," Dr. Mark Brunvand told me. "He could turn us into ten-foot-tall pimples, or he could give us the power to fight 10 to the 12th power different pathogens." That's a trillion potential bad actors. Why pimples? Pimples are filled with white blood cells, which are rich with immune system cells. In short, you could be a gigantic immune system and nothing else, or you could have some kind of secret power that allowed you to have all the other attributes of a human being—brain, heart, organs, limbs—and still somehow magically be able to fight infinite pathogens.
Dr. Brunvand is a retired Denver oncologist, one of the many medical authorities in the book – from wizened T-cell innovator Dr. Jacques Miller, to the finder of fever, Dr. Charles Dinarello, to his eminence Dr. Anthony Fauci at the National Institutes of Health to newly minted Nobel-Prize winner Jim Allison.
In the case of Dr. Brunvand, the oncologist also is integral to one of the book's narratives, a remarkable story of a friend of mine named Jason. Four years ago, he suffered late, late stage cancer, with 15 pounds of lymphoma growing in his back, and his oncologist put him into hospice. Then Jason became one of the first people ever to take an immunotherapy drug for lymphoma and his tumors disappeared. Through Jason's story, and a handful of other fascinating tales, I showcase how the immune system works.
There are two options for creating such a powerful immune system: we could be pimples or have some other magical power.
Dr. Brunvand had posited to me that there were two options for creating such a powerful and multifaceted immune system: we could be pimples or have some other magical power. You're not a pimple. So what was the ultimate solution?
Over the years, there were a handful of well-intentioned, thoughtful theories, but they strained to account for the inexplicable ability of the body to respond to virtually anything. The theories were complex and suffered from that peculiar side effect of having terrible names—like "side-chain theory" and "template-instructive hypothesis."
This was the background when along came Susumu Tonegawa.
***
Tonegawa was born in 1939, in the Japanese port city of Nagoya, and was reared during the war. Lucky for him, his father was moved around in his job, and so Tonegawa grew up in smaller towns. Otherwise, he might've been in Nagoya on May 14,1944, when the United States sent nearly 550 B-29 bombers to take out key industrial sites there and destroyed huge swaths of the city.
Fifteen years later, in 1959, Tonegawa was a promising student when a professor in Kyoto told him that he should go to the United States because Japan lacked adequate graduate training in molecular biology. A clear, noteworthy phenomenon was taking shape: Immunology and its greatest discoveries were an international affair, discoveries made through cooperation among the world's best brains, national boundaries be damned.
Tonegawa wound up at the University of California at San Diego, at a lab in La Jolla, "the beautiful Southern California town near the Mexican border." There, in multicultural paradise, he received his PhD, studying in the lab of Masaki Hayashi and then moved to the lab of Renato Dulbecco. Dr. Dulbecco was born in Italy, got a medical degree, was recruited to serve in World War II, where he fought the French and then, when Italian fascism collapsed, joined the resistance and fought the Germans. (Eventually, he came to the United States and in 1975 won a Nobel Prize for using molecular biology to show how viruses can lead, in some cases, to tumor creation.)
In 1970, Tonegawa—now armed with a PhD—faced his own immigration conundrum. His visa was set to expire by the end of 1970, and he was forced to leave the country for two years before he could return. He found a job in Switzerland at the Basel Institute for Immunology.
***
Around this time, new technology had emerged that allowed scientists to isolate different segments of an organism's genetic material. The technology allowed segments to be "cut" and then compared to one another. A truism emerged: If a researcher took one organism's genome and cut precisely the same segment over and over again, the resulting fragment of genetic material would match each time.
When you jump in that lake in a foreign land, filled with alien bugs, your body, astonishingly, well might have a defender that recognizes the creature.
This might sound obvious, but it was key to defining the consistency of an organism's genetic structure.
Then Tonegawa found the anomaly.
He was cutting segments of genetic material from within B cells. He began by comparing the segments from immature B cells, meaning, immune system cells that were still developing. When he compared identical segments in these cells, they yielded, predictably, identical fragments of genetic material. That was consistent with all previous knowledge.
But when he compared the segments to identical regions in mature B cells, the result was entirely different. This was new, distinct from any other cell or organism that had been studied. The underlying genetic material had changed.
"It was a big revelation," said Ruslan Medzhitov, a Yale scholar. "What he found, and is currently known, is that the antibody-encoding genes are unlike all other normal genes."
The antibody-encoding genes are unlike all other normal genes.
Yes, I used italics. Your immune system's incredible capabilities begin from a remarkable twist of genetics. When your immune system takes shape, it scrambles itself into millions of different combinations, random mixtures and blends. It is a kind of genetic Big Bang that creates inside your body all kinds of defenders aimed at recognizing all kinds of alien life forms.
So when you jump in that lake in a foreign land, filled with alien bugs, your body, astonishingly, well might have a defender that recognizes the creature.
Light the fireworks and send down the streamers!
As Tonegawa explored further, he discovered a pattern that described the differences between immature B cells and mature ones. Each of them shared key genetic material with one major variance: In the immature B cell, that crucial genetic material was mixed in with, and separated by, a whole array of other genetic material.
As the B cell matured into a fully functioning immune system cell, much of the genetic material dropped out. And not just that: In each maturing B cell, different material dropped out. What had begun as a vast array of genetic coding sharpened into this particular, even unique, strand of genetic material.
***
This is complex stuff. But a pep talk: This section is as deep and important as any in describing the wonder of the human body. Dear reader, please soldier on!
***
Researchers, who, eventually, sought a handy way to define the nature of the genetic change to the material of genes, labeled the key genetic material in an antibody with three initials: V, D, and J.
The letter V stands for variable. The variable part of the genetic material is drawn from hundreds of genes.
D stands for diversity, which is drawn from a pool of dozens of different genes.
And J is drawn from another half dozen genes.
In an immature B cell, the strands of V, D, and J material are in separate groupings, and they are separated by a relatively massive distance. But as the cell matures, a single, random copy of V remains, along with a single each of D and J, and all the other intervening material drops out. As I began to grasp this, it helped me to picture a line of genetic material stretching many miles. Suddenly, three random pieces step forward, and the rest drops away.
The combination of these genetic slices, grouped and condensed into a single cell, creates, by the power of math, trillions of different and virtually unique genetic codes.
In anticipation of threats from the unfathomable, our defenses evolved as infinity machines.
Or if you prefer a different metaphor, the body has randomly made hundreds of millions of different keys, or antibodies. Each fits a lock that is located on a pathogen. Many of these antibodies are combined such that they are alien genetic material—at least to us—and their locks will never surface in the human body. Some may not exist in the entire universe. Our bodies have come stocked with keys to the rarest and even unimaginable locks, forms of evil the world has not yet seen, but someday might. In anticipation of threats from the unfathomable, our defenses evolved as infinity machines.
"The discoveries of Tonegawa explain the genetic background allowing the enormous richness of variation among antibodies," the Nobel Prize committee wrote in its award to him years later, in 1987. "Beyond deeper knowledge of the basic structure of the immune system these discoveries will have importance in improving immunological therapy of different kinds, such as, for instance, the enforcement of vaccinations and inhibition of reactions during transplantation. Another area of importance is those diseases where the immune defense of the individual now attacks the body's own tissues, the so-called autoimmune diseases."
Indeed, these revelations are part of a period of time it would be fair to call the era of immunology, stretching from the middle of the 20th century to the present. During that period, we've come from sheer ignorance of the most basic aspects of the immune system to now being able to tinker under the hood with monoclonal antibodies and other therapies. And we are, in many ways, just at the beginning.