To Save Lives, This Scientist Is Trying to Grow Human Organs Inside of Sheep
More than 114,000 men, women, and children are awaiting organ transplants in the United States. Each day, 22 of them die waiting. To address this shortage, researchers are working hard to grow organs on-demand, using the patient's own cells, to eliminate the need to find a perfectly matched donor.
"The next step is to transplant these cells into a larger animal that will produce an organ that is the right size for a human."
But creating full-size replacement organs in a lab is still decades away. So some scientists are experimenting with the boundaries of nature and life itself: using other mammals to grow human cells. Earlier this year, this line of investigation took a big step forward when scientists announced they had grown sheep embryos that contained human cells.
Dr. Pablo Ross, an associate professor at the University of California, Davis, along with a team of colleagues, introduced human stem cells into the sheep embryos at a very early stage of their development and found that one in every 10,000 cells in the embryo were human. It was an improvement over their prior experiment, using a pig embryo, when they found that one in every 100,000 cells in the pig were human. The resulting chimera, as the embryo is called, is only allowed to develop for 28 days. Leapsmag contributor Caren Chesler recently spoke with Ross about his research. Their interview has been edited and condensed for clarity.
Your goal is to one day grow human organs in animals, for organ transplantation. What does your research entail?
We're transplanting stem cells from a person into an animal embryo, at about day three to five of embryo development.
This concept has already been shown to work between mice and rats. You can grow a mouse pancreas inside a rat, or you can grow a rat pancreas inside a mouse.
For this approach to work for humans, the next step is to transplant these cells into a larger animal that will produce an organ that is the right size for a human. That's why we chose to start some of this preliminary work using pigs and sheep. Adult pigs and adult sheep have organs that are of similar size to an adult human. Pigs and sheep also grow really fast, so they can grow from a single cell at the time of fertilization to human adult size -- about 200 pounds -- in only nine to 10 months. That's better than the average waiting time for an organ transplant.
"You don't want the cells to confer any human characteristics in the animal....Too many cells, that may be a problem, because we do not know what that threshold is."
So how do you get the animal to grow the human organ you want?
First, we need to generate the animal without its own organ. We can generate sheep or pigs that will not grow their own pancreases. Those animals can then be used as hosts for human pancreas generation.
For the approach to work, we need the human stem cells to be able to integrate into the embryo and to contribute to its tissues. What we've been doing with pigs, and more recently, in sheep, is testing different types of stem cells, and introducing them into an early embryo between three to five days of development. We then transfer that embryo to a surrogate female and then harvest the embryos back at day 28 of development, at which point most of the organs are pre-formed.
The human cells will contribute to every organ. But in trying to do that, they will compete with the host organism. Since this is happening inside a pig embryo, which is inside a pig foster mother, the pig cells will win that competition for every organ.
Because you're not putting in enough human cells?
No, because it's a pig environment. Everything is pig. The host, basically, is in control. That's what we see when we do rat mice, or mouse rat: the host always wins the battle.
But we need human cells in the early development -- a few, but not too few -- so that when an organ needs to form, like a pancreas (which develops at around day 25), the pig cells will not respond to that, but if there are human cells in that location, [those human cells] can respond to pancreas formation.
From the work in mice and rats, we know we need some kind of global contribution across multiple tissues -- even a 1% contribution will be sufficient. But if the cells are not there, then they're not going to contribute to that organ. The way we target the specific organ is by removing the competition for that organ.
So if you want it to grow a pancreas, you use an embryo that is not going to grow a pancreas of its own. But you can't control where the other cells go. For instance, you don't want them going to the animal's brain – or its gonads –right?
You don't want the cells to confer any human characteristics in the animal. But even if cells go to the brain, it's not going to confer on the animal human characteristics. A few human cells, even if they're in the brain, won't make it a human brain. Too many cells, that may be a problem, because we do not know what that threshold is.
The objective of our research right now is to look at just 28 days of embryonic development and evaluate what's going on: Are the human cells there? How many? Do they go to the brain? If so, how many? Is this a problem, or is it not a problem? If we find that too many human cells go to the brain, that will probably mean that we wouldn't continue with this approach. At this point, we're not controlling it; we're analyzing it.
"By keeping our research in a very early stage of development, we're not creating a human or a humanoid or anything in between."
What other ethical concerns have arisen?
Conferring human properties to the organism, that is a major concern. I wouldn't like to be involved in that, and so that's what we're trying to assess. By keeping our research in a very early stage of development, we're not creating a human or a humanoid or anything in between.
What specifically sets off the ethical alarms? An animal developing human traits?
Animals developing human characteristics goes beyond what would be considered acceptable. I share that concern. But so far, what we have observed, primarily in rats and mice, is that the host animal dictates development. When you put mouse cells into a rat -- and they're so closely related, sometimes the mouse cells contribute to about 30 percent of the cells in the animal -- the outcome is still a rat. It's the size of a rat. It's the shape of the rat. It has the organ sizes of a rat. Even when the pancreas is fully made out of mouse cells, the pancreas is rat-sized because it grew inside the rat.
This happens even with an organ that is not shared, like a gallbladder, which mice have but rats do not. If you put cells from a mouse into a rat, it never grows a gallbladder. And if you put rat cells into the mouse, the rat cells can end up in the gallbladder even though those rat cells would never have made a gallbladder in a rat.
That means the cell structure is following the directions of the embryo, in terms of how they're going to form and what they're going to make. Based on those observations, if you put human cells into a sheep, we are going to get a sheep with human cells. The organs, the pancreas, in our case, will be the size and shape of the sheep pancreas, but it will be loaded with human cells identical to those of the patient that provided the cells used to generate the stem cells.
But, yeah, if by doing this, the animal acquires the functional or anatomical characteristics associated with a human, it would not be acceptable for me.
So you think these concerns are justified?
Absolutely. They need to be considered. But sometimes by raising these concerns, we prevent technologies from being developed. We need to consider the concerns, but we must evaluate them fully, to determine if they are scientifically justified. Because while we must consider the ethics of doing this, we also need to consider the ethics of not doing it. Every day, 22 people in the US die because they don't receive the organ they need to survive. This shortage is not going to be solved by donations, alone. That's clear. And when people die of old age, their organs are not good anymore.
Since organ transplantation has been so successful, the number of people needing organs has just been growing. The number of organs available has also grown but at a much slower pace. We need to find an alternative, and I think growing the organs in animals is one of those alternatives.
Right now, there's a moratorium on National Institutes of Health funding?
Yes. It's only one agency, but it happens to be the largest biomedical funding source. We have public funding for this work from the California Institute for Regenerative Medicine, and one of my colleagues has funding from the Department of Defense.
"I can say, without NIH funding, it's not going to happen here. It may happen in other places, like China."
Can we put the moratorium in context? How much research in the U.S. is funded by the NIH?
Probably more than 75 percent.
So what kind of impact would lifting that ban have on speeding up possible treatments for those who need a new organ?
Oh, I think it would have a huge impact. The moratorium not only prevents people from seeking funding to advance this area of research, it influences other sources of funding, who think, well, if the NIH isn't doing it, why are we going to do it? It hinders progress.
So with the ban, how long until we can really have organs growing in animals? I've heard five or 10 years.
With or without the ban, I don't think I can give you an accurate estimate.
What we know so far is that human cells don't contribute a lot to the animal embryo. We don't know exactly why. We have a lot of good ideas about things we can test, but we can't move forward right now because we don't have funding -- or we're moving forward but very slowly. We're really just scratching the surface in terms of developing these technologies.
We still need that one major leap in our understanding of how different species interact, and how human cells participate in the development of other species. I cannot predict when we're going to reach that point. I can say, without NIH funding, it's not going to happen here. It may happen in other places, like China, but without NIH funding, it's not going to happen in the U.S.
I think it's important to mention that this is in a very early stage of development and it should not be presented to people who need an organ as something that is possible right now. It's not fair to give false hope to people who are desperate.
So the five to 10 year figure is not realistic.
I think it will take longer than that. If we had a drug right now that we knew could stop heart attacks, it could take five to 10 years just to get it to market. With this, you're talking about a much more complex system. I would say 20 to 25 years. Maybe.
Breakthrough therapies are breaking patients' banks. Key changes could improve access, experts say.
CSL Behring’s new gene therapy for hemophilia, Hemgenix, costs $3.5 million for one treatment, but helps the body create substances that allow blood to clot. It appears to be a cure, eliminating the need for other treatments for many years at least.
Likewise, Novartis’s Kymriah mobilizes the body’s immune system to fight B-cell lymphoma, but at a cost $475,000. For patients who respond, it seems to offer years of life without the cancer progressing.
These single-treatment therapies are at the forefront of a new, bold era of medicine. Unfortunately, they also come with new, bold prices that leave insurers and patients wondering whether they can afford treatment and, if they can, whether the high costs are worthwhile.
“Most pharmaceutical leaders are there to improve and save people’s lives,” says Jeremy Levin, chairman and CEO of Ovid Therapeutics, and immediate past chairman of the Biotechnology Innovation Organization. If the therapeutics they develop are too expensive for payers to authorize, patients aren’t helped.
“The right to receive care and the right of pharmaceuticals developers to profit should never be at odds,” Levin stresses. And yet, sometimes they are.
Leigh Turner, executive director of the bioethics program, University of California, Irvine, notes this same tension between drug developers that are “seeking to maximize profits by charging as much as the market will bear for cell and gene therapy products and other medical interventions, and payers trying to control costs while also attempting to provide access to medical products with promising safety and efficacy profiles.”
Why Payers Balk
Health insurers can become skittish around extremely high prices, yet these therapies often accompany significant overall savings. For perspective, the estimated annual treatment cost for hemophilia exceeds $300,000. With Hemgenix, payers would break even after about 12 years.
But, in 12 years, will the patient still have that insurer? Therein lies the rub. U.S. payers, are used to a “pay-as-you-go” model, in which the lifetime costs of therapies typically are shared by multiple payers over many years, as patients change jobs. Single treatment therapeutics eliminate that cost-sharing ability.
"As long as formularies are based on profits to middlemen…Americans’ healthcare costs will continue to skyrocket,” says Patricia Goldsmith, the CEO of CancerCare.
“There is a phenomenally complex, bureaucratic reimbursement system that has grown, layer upon layer, during several decades,” Levin says. As medicine has innovated, payment systems haven’t kept up.
Therefore, biopharma companies begin working with insurance companies and their pharmacy benefit managers (PBMs), which act on an insurer’s behalf to decide which drugs to cover and by how much, early in the drug approval process. Their goal is to make sophisticated new drugs available while still earning a return on their investment.
New Payment Models
Pay-for-performance is one increasingly popular strategy, Turner says. “These models typically link payments to evidence generation and clinically significant outcomes.”
A biotech company called bluebird bio, for example, offers value-based pricing for Zynteglo, a $2.8 million possible cure for the rare blood disorder known as beta thalassaemia. It generally eliminates patients’ need for blood transfusions. The company is so sure it works that it will refund 80 percent of the cost of the therapy if patients need blood transfusions related to that condition within five years of being treated with Zynteglo.
In his February 2023 State of the Union speech, President Biden proposed three pilot programs to reduce drug costs. One of them, the Cell and Gene Therapy Access Model calls on the federal Centers for Medicare & Medicaid Services to establish outcomes-based agreements with manufacturers for certain cell and gene therapies.
A mortgage-style payment system is another, albeit rare, approach. Amortized payments spread the cost of treatments over decades, and let people change employers without losing their healthcare benefits.
Only about 14 percent of all drugs that enter clinical trials are approved by the FDA. Pharma companies, therefore, have an exigent need to earn a profit.
The new payment models that are being discussed aren’t solutions to high prices, says Bill Kramer, senior advisor for health policy at Purchaser Business Group on Health (PBGH), a nonprofit that seeks to lower health care costs. He points out that innovative pricing models, although well-intended, may distract from the real problem of high prices. They are attempts to “soften the blow. The best thing would be to charge a reasonable price to begin with,” he says.
Instead, he proposes making better use of research on cost and clinical effectiveness. The Institute for Clinical and Economic Review (ICER) conducts such research in the U.S., determining whether the benefits of specific drugs justify their proposed prices. ICER is an independent non-profit research institute. Its reports typically assess the degrees of improvement new therapies offer and suggest prices that would reflect that. “Publicizing that data is very important,” Kramer says. “Their results aren’t used to the extent they could and should be.” Pharmaceutical companies tend to price their therapies higher than ICER’s recommendations.
Drug Development Costs Soar
Drug developers have long pointed to the onerous costs of drug development as a reason for high prices.
A 2020 study found the average cost to bring a drug to market exceeded $1.1 billion, while other studies have estimated overall costs as high as $2.6 billion. The development timeframe is about 10 years. That’s because modern therapeutics target precise mechanisms to create better outcomes, but also have high failure rates. Only about 14 percent of all drugs that enter clinical trials are approved by the FDA. Pharma companies, therefore, have an exigent need to earn a profit.
Skewed Incentives Increase Costs
Pricing isn’t solely at the discretion of pharma companies, though. “What patients end up paying has much more to do with their PBMs than the actual price of the drug,” Patricia Goldsmith, CEO, CancerCare, says. Transparency is vital.
PBMs control patients’ access to therapies at three levels, through price negotiations, pricing tiers and pharmacy management.
When negotiating with drug manufacturers, Goldsmith says, “PBMs exchange a preferred spot on a formulary (the insurer’s or healthcare provider’s list of acceptable drugs) for cash-base rebates.” Unfortunately, 25 percent of the time, those rebates are not passed to insurers, according to the PBGH report.
Then, PBMs use pricing tiers to steer patients and physicians to certain drugs. For example, Kramer says, “Sometimes PBMs put a high-cost brand name drug in a preferred tier and a lower-cost competitor in a less preferred, higher-cost tier.” As the PBGH report elaborates, “(PBMs) are incentivized to include the highest-priced drugs…since both manufacturing rebates, as well as the administrative fees they charge…are calculated as a percentage of the drug’s price.
Finally, by steering patients to certain pharmacies, PBMs coordinate patients’ access to treatments, control patients’ out-of-pocket costs and receive management fees from the pharmacies.
Therefore, Goldsmith says, “As long as formularies are based on profits to middlemen…Americans’ healthcare costs will continue to skyrocket.”
Transparency into drug pricing will help curb costs, as will new payment strategies. What will make the most impact, however, may well be the development of a new reimbursement system designed to handle dramatic, breakthrough drugs. As Kramer says, “We need a better system to identify drugs that offer dramatic improvements in clinical care.”
Each afternoon, kids walk through my neighborhood, on their way back home from school, and almost all of them are walking alone, staring down at their phones. It's a troubling site. This daily parade of the zombie children just can’t bode well for the future.
That’s one reason I felt like Gaia Bernstein’s new book was talking directly to me. A law professor at Seton Hall, Gaia makes a strong argument that people are so addicted to tech at this point, we need some big, system level changes to social media platforms and other addictive technologies, instead of just blaming the individual and expecting them to fix these issues.
Gaia’s book is called Unwired: Gaining Control Over Addictive Technologies. It’s fascinating and I had a chance to talk with her about it for today’s podcast. At its heart, our conversation is really about how and whether we can maintain control over our thoughts and actions, even when some powerful forces are pushing in the other direction.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
We discuss the idea that, in certain situations, maybe it's not reasonable to expect that we’ll be able to enjoy personal freedom and autonomy. We also talk about how to be a good parent when it sometimes seems like our kids prefer to be raised by their iPads; so-called educational video games that actually don’t have anything to do with education; the root causes of tech addictions for people of all ages; and what kinds of changes we should be supporting.
Gaia is Seton’s Hall’s Technology, Privacy and Policy Professor of Law, as well as Co-Director of the Institute for Privacy Protection, and Co-Director of the Gibbons Institute of Law Science and Technology. She’s the founding director of the Institute for Privacy Protection. She created and spearheaded the Institute’s nationally recognized Outreach Program, which educated parents and students about technology overuse and privacy.
Professor Bernstein's scholarship has been published in leading law reviews including the law reviews of Vanderbilt, Boston College, Boston University, and U.C. Davis. Her work has been selected to the Stanford-Yale Junior Faculty Forum and received extensive media coverage. Gaia joined Seton Hall's faculty in 2004. Before that, she was a fellow at the Engelberg Center of Innovation Law & Policy and at the Information Law Institute of the New York University School of Law. She holds a J.S.D. from the New York University School of Law, an LL.M. from Harvard Law School, and a J.D. from Boston University.
Gaia’s work on this topic is groundbreaking I hope you’ll listen to the conversation and then consider pre-ordering her new book. It comes out on March 28.