A New Web Could be Coming. Will It Improve Human Health?
The Web has provided numerous benefits over the years, but users have also experienced issues related to privacy, cybersecurity, income inequality, and addiction which negatively impact their quality of life. In important ways, the Web has yet to meet its potential to support human health.
Now, engineers are in the process of developing a new version of the Web, called Web3, which would seek to address the Web’s current shortcomings through a mix of new technologies.
It could also create new problems. Industrial revolutions, including new versions of the Web, have trade-offs. While many activists tend to focus on the negative aspects of Web3 technologies, they overlook some of the potential benefits to health and the environment that aren’t as easily quantifiable such as less stressful lives, fewer hours required for work, and a higher standard of living. What emerging technologies are in the mix to define the new era of the digital age, and how will they contribute to our overall health and well-being?
In order to answer these questions, I have identified three major trends that may help define the future landscape of Web3. These include more powerful machine intelligence that could drive improvements in healthcare, decentralized banking systems that allow consumers to bypass middlemen, and self-driving cars with potential to reduce pollution. However, it is the successes of the enabling technologies that support these goals—improvements in AI, blockchain and smart contracts, and fog computing—that will ultimately define Web3.
Machine Intelligence and Diagnosing Diseases
While the internet is the physical network equipment and computers that keep the world connected, the Web is one of the services that run on the internet. In 1989, British scientist Tim Berners-Lee invented the World Wide Web and, when Web1 went live in 1991, it consisted of pages of text connected by hyperlinks. It remained that way until 2004 with the introduction of Web2, which provided social media websites and let users generate content in addition to consuming it passively.
The Semantic Web could expand the impact of new cognitive skills for machines by feeding data to AI in more readily accessible formats. This will make machines better at solving hard problems such as diagnosing and treating complex diseases.
For the most part, Web2 is what we still have today but, from the beginning, Berners-Lee, now an MIT professor, envisaged a much more sophisticated version of the Web. Known as the Semantic Web, it would not only store data, but actually know what it means. The goal is to make all information on the Internet “machine-readable,” so it can be easily processed by computers, like an Excel sheet full of numbers as opposed to human language. We are now in the early stages of the Semantic Web, which incorporates his vision. For example, there is already a cloud of datasets that links thousands of servers without any form of centralized control. However, due to the costs and technological hurdles related to converting human language into something that computers can understand, the Semantic Web remains an ongoing project.
Currently, AI is only able to perform certain tasks, but it can already make healthcare business practices more efficient by leveraging deep learning to analyze data in supply chains. DeepMind, the company that developed AI for defeating chess masters, has also made huge advances in figuring out protein folding and misfolding, which is responsible for some diseases. Currently, AI is not that useful for diagnosing and treating many complex diseases. This is because deep learning is probabilistic, not causal. So, it is able to understand correlation, but not cause and effect.
Like the Web, though, AI is evolving, and the limitations of deep learning could be overcome in the foreseeable future. A number of government programs and private initiatives are dedicated to better understanding human brain complexity and equipping machines with reasoning, common sense, and the ability to understand cause and effect. The Semantic Web could expand the impact of these new cognitive skills by feeding data to AI in more readily accessible formats. This will make machines better at solving hard problems such as diagnosing and treating complex diseases, which involve genetic, lifestyle, and environment factors. These powerful AIs in the realm of healthcare could become an enduring and important feature of Web3.
Blockchain, Smart Contracts and Income Inequality
The Web2 version of the digital age was certainly impactful in altering our lifestyle both positively and negatively. This is predominately because of the business model used by companies such as Meta (formerly Facebook) and Google. By providing useful products like search engines, these companies have lured consumers into giving away their personal data for free, and the companies use this information to detect buying patterns in order to sell advertising. The digital economy made high tech companies billions of dollars while many users became underemployed or jobless.
In recent years, a similar model has been emerging in the realm of genetics. Personalized genomic companies charge a relatively small fee to analyze a fraction of our genes and provide probabilities of having specific medical conditions. While individual data is not valuable, cumulative data is helpful for deep learning. So, these companies can sell the anonymous DNA data to pharmaceutical companies for millions of dollars.
As these companies improve their ability to collect even more data about our genetic vulnerabilities, the technologies of Web3 could protect consumers from giving it away for free. An emerging technology called blockchain is able to provide a Web-based ledger of financial transactions with checks and balances to ensure that its records cannot be faked or altered. It has yet to reach mass adoption by the public, but the computer scientist Jaron Lanier has proposed storing our genomes and electronic health records in blockchain, utilizing electronic smart contracts between individuals and pharma healthcare industry. Micropayments could then be made to individuals for their data, using cryptocurrency.
These individual payments could become more lucrative in the coming years especially as researchers learn how to fully interpret and apply a person’s genetic data. In this way, blockchain could lead to improvements in income inequality, which currently drives health problems and other challenges for many. A number of start-ups are using this business model which has secure data and eliminates middlemen who don’t create any value, while compensating and protecting the privacy of individuals who contribute their health data.
Autonomous Vehicles, Fog Computing and Pollution
A number of trends indicate that modernizing the transportation industry would address a myriad of problems with public health, productivity and the environment. Autonomous vehicles (AVs) could help usher in this new era of transportation, and these AVs would need to be supported by Web3 technologies.
Automobile accidents are the second leading cause of death worldwide, with roughly 1.3 million fatalities annually, according to the World Health Organization. Some estimates suggest that replacing human drivers with AVs could eliminate as many as a million global fatalities annually. Shared AVs would help to reduce traffic congestion that wastes time and fuel, and electric vehicles would help minimize greenhouse gases.
To reap the benefits from replacing gas vehicles with electric, societies will need an infrastructure that enables self-driving cars to communicate with each other. Most data processing in computers is performed using von Neumann architecture, where the data memory and the processor are in two different places. Today, that typically means cloud computing. With self-driving cars, when cameras and sensors generate data to detect objects on the roads, processors will need to rapidly analyze the data and make real-time decisions regarding acceleration, braking, and steering. However, cloud computing is susceptible to latency issues.
One solution to latency is moving processing and data storage closer to where it is needed to improve response times. Edge computing, for example, places the processor at the site where the data is generated. Most new human-driven vehicles contain anywhere from 30 to 100 electronic control units (ECUs) that process data and control electrical systems in vehicles. These embedded systems, typically in the dashboard, control different applications such as airbags, steering, brakes, etc. ECUs process data generated by cameras and sensors in AVs and make crucial decisions on how they operate.
Self-driving cars can benefit by communicating with each other for navigation in the same way that bacteria and animals use swarm intelligence for tasks involving groups. Researchers are currently investigating fog computing which utilizes servers along highways for faster and more reliable navigation and for communicating data analytics among driverless cars.
The Future Landscape of Web3 is Uncertain
The future of Web3 has many possibilities. However, there is no guarantee that blockchain, smart contracts, and fog computing will achieve public acceptance and market saturation or prevail over other technologies or the status quo of Web2. It is also uncertain if or when the breakthroughs in AI will occur that could eradicate complex diseases through Web3.
An example of this uncertainty is the metaverse, which combines blockchain with virtual reality. Currently, the metaverse is primarily used for gaming and recreational use until its infrastructure is further developed. Researchers are interested in the long-term mental health effects of virtual reality, both positive and negative. Using avatars, or virtual representations of humans, in the metaverse, users have greater control of their environment and chosen identities. But, it is unclear what negative mental health effects will occur. As far as regulations, the metaverse is still in the Wild West stage, and bullying or even murder will likely take place. Also, there will be a point where virtual worlds like the metaverse will become so immersive that we won't want to leave them, according to Meta’s Zuckerberg.
The metaverse would rely on virtual reality technology that was developed many years ago, and adoption has been slower than some experts predicted. But most emerging technologies, including other examples related to Web3, follow a similar, nonlinear pattern of development that Gartner has represented in graphical form using the S-curve. To develop a technology forecast for Web3, you can follow the progress along the curve from proof of concept to a particular goal. After a series of successes and failures, entrepreneurs will continue to improve their products until each emerging technology fails or achieves mainstream adoption by the public.
What mix of emerging technologies ultimately defines Web3 will likely be determined by the benefits they provide to society—including whether and how they improve health—how they stimulate the digital economy, and how they address the significant shortcomings of Web2.
If you look back on the last century of scientific achievements, you might notice that most of the scientists we celebrate are overwhelmingly white, while scientists of color take a backseat. Since the Nobel Prize was introduced in 1901, for example, no black scientists have landed this prestigious award.
The work of black women scientists has gone unrecognized in particular. Their work uncredited and often stolen, black women have nevertheless contributed to some of the most important advancements of the last 100 years, from the polio vaccine to GPS.
Here are five black women who have changed science forever.
Dr. May Edward Chinn
Dr. May Edward Chinn practicing medicine in Harlem
George B. Davis, PhD.
Chinn was born to poor parents in New York City just before the start of the 20th century. Although she showed great promise as a pianist, playing with the legendary musician Paul Robeson throughout the 1920s, she decided to study medicine instead. Chinn, like other black doctors of the time, were barred from studying or practicing in New York hospitals. So Chinn formed a private practice and made house calls, sometimes operating in patients’ living rooms, using an ironing board as a makeshift operating table.
Chinn worked among the city’s poor, and in doing this, started to notice her patients had late-stage cancers that often had gone undetected or untreated for years. To learn more about cancer and its prevention, Chinn begged information off white doctors who were willing to share with her, and even accompanied her patients to other clinic appointments in the city, claiming to be the family physician. Chinn took this information and integrated it into her own practice, creating guidelines for early cancer detection that were revolutionary at the time—for instance, checking patient health histories, checking family histories, performing routine pap smears, and screening patients for cancer even before they showed symptoms. For years, Chinn was the only black female doctor working in Harlem, and she continued to work closely with the poor and advocate for early cancer screenings until she retired at age 81.
Alice Ball
Pictorial Press Ltd/Alamy
Alice Ball was a chemist best known for her groundbreaking work on the development of the “Ball Method,” the first successful treatment for those suffering from leprosy during the early 20th century.
In 1916, while she was an undergraduate student at the University of Hawaii, Ball studied the effects of Chaulmoogra oil in treating leprosy. This oil was a well-established therapy in Asian countries, but it had such a foul taste and led to such unpleasant side effects that many patients refused to take it.
So Ball developed a method to isolate and extract the active compounds from Chaulmoogra oil to create an injectable medicine. This marked a significant breakthrough in leprosy treatment and became the standard of care for several decades afterward.
Unfortunately, Ball died before she could publish her results, and credit for this discovery was given to another scientist. One of her colleagues, however, was able to properly credit her in a publication in 1922.
Henrietta Lacks
onathan Newton/The Washington Post/Getty
The person who arguably contributed the most to scientific research in the last century, surprisingly, wasn’t even a scientist. Henrietta Lacks was a tobacco farmer and mother of five children who lived in Maryland during the 1940s. In 1951, Lacks visited Johns Hopkins Hospital where doctors found a cancerous tumor on her cervix. Before treating the tumor, the doctor who examined Lacks clipped two small samples of tissue from Lacks’ cervix without her knowledge or consent—something unthinkable today thanks to informed consent practices, but commonplace back then.
As Lacks underwent treatment for her cancer, her tissue samples made their way to the desk of George Otto Gey, a cancer researcher at Johns Hopkins. He noticed that unlike the other cell cultures that came into his lab, Lacks’ cells grew and multiplied instead of dying out. Lacks’ cells were “immortal,” meaning that because of a genetic defect, they were able to reproduce indefinitely as long as certain conditions were kept stable inside the lab.
Gey started shipping Lacks’ cells to other researchers across the globe, and scientists were thrilled to have an unlimited amount of sturdy human cells with which to experiment. Long after Lacks died of cervical cancer in 1951, her cells continued to multiply and scientists continued to use them to develop cancer treatments, to learn more about HIV/AIDS, to pioneer fertility treatments like in vitro fertilization, and to develop the polio vaccine. To this day, Lacks’ cells have saved an estimated 10 million lives, and her family is beginning to get the compensation and recognition that Henrietta deserved.
Dr. Gladys West
Andre West
Gladys West was a mathematician who helped invent something nearly everyone uses today. West started her career in the 1950s at the Naval Surface Warfare Center Dahlgren Division in Virginia, and took data from satellites to create a mathematical model of the Earth’s shape and gravitational field. This important work would lay the groundwork for the technology that would later become the Global Positioning System, or GPS. West’s work was not widely recognized until she was honored by the US Air Force in 2018.
Dr. Kizzmekia "Kizzy" Corbett
TIME Magazine
At just 35 years old, immunologist Kizzmekia “Kizzy” Corbett has already made history. A viral immunologist by training, Corbett studied coronaviruses at the National Institutes of Health (NIH) and researched possible vaccines for coronaviruses such as SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome).
At the start of the COVID pandemic, Corbett and her team at the NIH partnered with pharmaceutical giant Moderna to develop an mRNA-based vaccine against the virus. Corbett’s previous work with mRNA and coronaviruses was vital in developing the vaccine, which became one of the first to be authorized for emergency use in the United States. The vaccine, along with others, is responsible for saving an estimated 14 million lives.On today’s episode of Making Sense of Science, I’m honored to be joined by Dr. Paul Song, a physician, oncologist, progressive activist and biotech chief medical officer. Through his company, NKGen Biotech, Dr. Song is leveraging the power of patients’ own immune systems by supercharging the body’s natural killer cells to make new treatments for Alzheimer’s and cancer.
Whereas other treatments for Alzheimer’s focus directly on reducing the build-up of proteins in the brain such as amyloid and tau in patients will mild cognitive impairment, NKGen is seeking to help patients that much of the rest of the medical community has written off as hopeless cases, those with late stage Alzheimer’s. And in small studies, NKGen has shown remarkable results, even improvement in the symptoms of people with these very progressed forms of Alzheimer’s, above and beyond slowing down the disease.
In the realm of cancer, Dr. Song is similarly setting his sights on another group of patients for whom treatment options are few and far between: people with solid tumors. Whereas some gradual progress has been made in treating blood cancers such as certain leukemias in past few decades, solid tumors have been even more of a challenge. But Dr. Song’s approach of using natural killer cells to treat solid tumors is promising. You may have heard of CAR-T, which uses genetic engineering to introduce cells into the body that have a particular function to help treat a disease. NKGen focuses on other means to enhance the 40 plus receptors of natural killer cells, making them more receptive and sensitive to picking out cancer cells.
Paul Y. Song, MD is currently CEO and Vice Chairman of NKGen Biotech. Dr. Song’s last clinical role was Asst. Professor at the Samuel Oschin Cancer Center at Cedars Sinai Medical Center.
Dr. Song served as the very first visiting fellow on healthcare policy in the California Department of Insurance in 2013. He is currently on the advisory board of the Pritzker School of Molecular Engineering at the University of Chicago and a board member of Mercy Corps, The Center for Health and Democracy, and Gideon’s Promise.
Dr. Song graduated with honors from the University of Chicago and received his MD from George Washington University. He completed his residency in radiation oncology at the University of Chicago where he served as Chief Resident and did a brachytherapy fellowship at the Institute Gustave Roussy in Villejuif, France. He was also awarded an ASTRO research fellowship in 1995 for his research in radiation inducible gene therapy.
With Dr. Song’s leadership, NKGen Biotech’s work on natural killer cells represents cutting-edge science leading to key findings and important pieces of the puzzle for treating two of humanity’s most intractable diseases.
Show links
- Paul Song LinkedIn
- NKGen Biotech on Twitter - @NKGenBiotech
- NKGen Website: https://nkgenbiotech.com/
- NKGen appoints Paul Song
- Patient Story: https://pix11.com/news/local-news/long-island/promising-new-treatment-for-advanced-alzheimers-patients/
- FDA Clearance: https://nkgenbiotech.com/nkgen-biotech-receives-ind-clearance-from-fda-for-snk02-allogeneic-natural-killer-cell-therapy-for-solid-tumors/Q3 earnings data: https://www.nasdaq.com/press-release/nkgen-biotech-inc.-reports-third-quarter-2023-financial-results-and-business