Who Qualifies as an “Expert” And How Can We Decide Who Is Trustworthy?
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
Expertise is a slippery concept. Who has it, who claims it, and who attributes or yields it to whom is a culturally specific, sociological process. During the COVID-19 pandemic, we have witnessed a remarkable emergence of legitimate and not-so-legitimate scientists publicly claiming or being attributed to have academic expertise in precisely my field: infectious disease epidemiology. From any vantage point, it is clear that charlatans abound out there, garnering TV coverage and hundreds of thousands of Twitter followers based on loud opinions despite flimsy credentials. What is more interesting as an insider is the gradient of expertise beyond these obvious fakers.
A person's expertise is not a fixed attribute; it is a hierarchical trait defined relative to others. Despite my protestations, I am the go-to expert on every aspect of the pandemic to my family. To a reporter, I might do my best to answer a question about the immune response to SARS-CoV-2, noting that I'm not an immunologist. Among other academic scientists, my expertise is more well-defined as a subfield of epidemiology, and within that as a particular area within infectious disease epidemiology. There's a fractal quality to it; as you zoom in on a particular subject, a differentiation of expertise emerges among scientists who, from farther out, appear to be interchangeable.
We all have our scientific domain and are less knowledgeable outside it, of course, and we are often asked to comment on a broad range of topics. But many scientists without a track record in the field have become favorites among university administrators, senior faculty in unrelated fields, policymakers, and science journalists, using institutional prestige or social connections to promote themselves. This phenomenon leads to a distorted representation of science—and of academic scientists—in the public realm.
Trustworthy experts will direct you to others in their field who know more about particular topics, and will tend to be honest about what is and what isn't "in their lane."
Predictably, white male voices have been disproportionately amplified, and men are certainly over-represented in the category of those who use their connections to inappropriately claim expertise. Generally speaking, we are missing women, racial minorities, and global perspectives. This is not only important because it misrepresents who scientists are and reinforces outdated stereotypes that place white men in the Global North at the top of a credibility hierarchy. It also matters because it can promote bad science, and it passes over scientists who can lend nuance to the scientific discourse and give global perspectives on this quintessentially global crisis.
Also at work, in my opinion, are two biases within academia: the conflation of institutional prestige with individual expertise, and the bizarre hierarchy among scientists that attributes greater credibility to those in quantitative fields like physics. Regardless of mathematical expertise or institutional affiliation, lack of experience working with epidemiological data can lead to over-confidence in the deceptively simple mathematical models that we use to understand epidemics, as well as the inappropriate use of uncertain data to inform them. Prominent and vocal scientists from different quantitative fields have misapplied the methods of infectious disease epidemiology during the COVID-19 pandemic so far, creating enormous confusion among policymakers and the public. Early forecasts that predicted the epidemic would be over by now, for example, led to a sense that epidemiological models were all unreliable.
Meanwhile, legitimate scientific uncertainties and differences of opinion, as well as fundamentally different epidemic dynamics arising in diverse global contexts and in different demographic groups, appear in the press as an indistinguishable part of this general chaos. This leads many people to question whether the field has anything worthwhile to contribute, and muddies the facts about COVID-19 policies for reducing transmission that most experts agree on, like wearing masks and avoiding large indoor gatherings.
So how do we distinguish an expert from a charlatan? I believe a willingness to say "I don't know" and to openly describe uncertainties, nuances, and limitations of science are all good signs. Thoughtful engagement with questions and new ideas is also an indication of expertise, as opposed to arrogant bluster or a bullish insistence on a particular policy strategy regardless of context (which is almost always an attempt to hide a lack of depth of understanding). Trustworthy experts will direct you to others in their field who know more about particular topics, and will tend to be honest about what is and what isn't "in their lane." For example, some expertise is quite specific to a given subfield: epidemiologists who study non-infectious conditions or nutrition, for example, use different methods from those of infectious disease experts, because they generally don't need to account for the exponential growth that is inherent to a contagion process.
Academic scientists have a specific, technical contribution to make in containing the COVID-19 pandemic and in communicating research findings as they emerge. But the liminal space between scientists and the public is subject to the same undercurrents of sexism, racism, and opportunism that society and the academy have always suffered from. Although none of the proxies for expertise described above are fool-proof, they are at least indicative of integrity and humility—two traits the world is in dire need of at this moment in history.
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
Pregnant and Breastfeeding Women Might Have a New Reason to Ditch Artificial Sweeteners
Women considering pregnancy might have another reason to drop artificial sweeteners from their diet, if a new study of mice proves to apply to humans as well. It highlights "yet another potential health impact of zero-calorie sweeteners," according to lead author Stephanie Olivier-Van Stichelen.
The discovery was serendipitous, not part of the original study.
It found that commonly used artificial sweeteners consumed by female mice transfer to pups in the womb and later through milk, harming their development. The sweeteners affected the composition of bacteria in the gut of the pups, making them more vulnerable to developing diabetes, and greatly reduced the liver's capacity to neutralize toxins.
The discovery was serendipitous, not part of the original study, says John Hanover, the senior author and a cell biologist at the NIH National Institute of Diabetes and Digestive and Kidney Diseases. The main study looked at how a high sugar diet in the mother turns genes on and off in the developing offspring.
It compared them with mothers fed a low sugar diet, replacing sugar with a mix of sucralose and acesulfame-K (AK), two non-nutrient artificial sugars that are already used extensively in our food products and thought to be safe.
While the artificial sweeteners had little effect on the mothers, the trace amounts that were transferred through the placenta and milk had a profound effect on the pups. Hanover believes the molecules are changing gene expression during a crucial, short period of development.
"Somewhat to our surprise, we saw in the pups a really dramatic change in the microbiome" of those whose mothers were fed the artificial sweeteners, Hanover told leapsmag. "It looked like the neonates were much, much more sensitive than their mothers to the sucralose and AK." The unexpected discovery led them to publish a separate paper.
"The protective microbe Akkermansia was largely missing, and we saw a pretty dramatic shift in the ratio of two bacteria that are normally associated with metabolic disease," a precursor to diabetes, he explains. Akkermansia is a bacteria that feeds on mucus in the gut and helps remodel the tissue to an adult state over the first several months of life in a mouse. A similar process takes several years in humans, as the infant is weaned off of breast milk as the primary food source.
The good news is the body seems to remove these artificial sweeteners fairly quickly, probably within a week.
Another problem the researchers saw in the animals was "a particularly striking change in the metabolism of the detoxification systems" in the liver, says Hanover. A healthy liver is dark red, but a high dose of the artificial sweeteners turned it white, "which is a sign of massive problems."
The study was conducted in mice and Hanover cautions the findings may not apply to humans. "But in general, the microbiome changes that one sees in the rodent model mimics what we see in humans...[and] the genes that are turned on in the mouse and the human are very similar."
Hanover acknowledges the quantity of artificial sweeteners used in the study is on the high end of human consumption, roughly the equivalent of 20 cans of diet soda a day. But the sweeteners are so ubiquitous in consumer products, from foods to lipstick, and often not even mentioned on the label, that it is difficult to measure just how much a person consumes every day.
The good news is the body seems to remove these artificial sweeteners fairly quickly, probably within a week. Until further studies provide a clearer picture, women who want to err on the side of caution can choose to reduce if not eliminate their exposure to artificial sweeteners during pregnancy and breastfeeding.
NASA Has the Technology to Save Us From an Asteroid Strike, But Congress Won’t Fund It
At the biannual Planetary Defense Conference earlier this year, NASA ran a simulation of an asteroid slamming into the center of Manhattan.
For several millennia now, we've been lucky, but our luck won't hold out forever.
The gathering of astronomers, planetary scientists, and FEMA disaster-response experts attempted a number of interventions that might be possible within a time window of eight years, the given warning period before impact.
Catastrophic asteroid crashes are not without precedent, and scientists say it's only a matter of time before another one occurs—that is, if we do nothing to prevent it. It's believed that a huge asteroid crash off the coast of Mexico's Yucatan Peninsula created a worldwide disaster that helped to speed the extinction of the dinosaurs 65 million years ago.
In 1908, a meteoroid less than 300 feet in diameter exploded in the air over the Tunguska region of Siberia, creating a shockwave that leveled trees for hundreds of square miles. It's a matter of sheer luck it didn't hit a major population center, where human casualties could have been enormous.
For several millennia now, we've been lucky, but our luck won't hold out forever. There are millions of asteroids circulating about in our solar system, some of them hundreds of miles across, and although the odds of a massive one crashing to Earth in the near future is statistically low, the devastation could be apocalyptic.
Back at the conference, the experts tried sending several spacecrafts to knock the asteroid off-course by slamming into it. They considered blasting it with nuclear weapons. They even considered painting it white so it absorbed less of the sun's energy, hoping that would shift the asteroid's trajectory. In the simulations, all of the interventions failed and the giant space rock crashed into Manhattan, killing 1.3 million people in a massive explosion that was 1,000 times more powerful than the Hiroshima bomb.
NEOCam is designed, tested, and ready to build, but the project is currently frozen because of a $40 million gap in NASA funding.
Given more time, the scientists said, they might have succeeded in preventing the disaster. However, with today's asteroid-hunting telescopes, it's not likely we would have more warning. Our current telescopes are not powerful enough to detect all the near-earth asteroids, nor are they positioned well enough for sufficient detection. As recently as last week, for example, an asteroid traveling 15 miles a second narrowly missed crashing into the Earth, and it was only noticed several days in advance.
Now for the good news: There is a new technology that could buy us the time we need, says MIT planetary sciences professor Richard P. Binzel and colleagues who attended the conference. The Near-Earth Object Camera, or NEOCam, designed by NASA's Jet Propulsion Laboratory, would detect more than 90 percent of nearby objects that are 420 feet across or larger, according to Binzel.
The powerful infrared telescope is designed to sit within the L1 Lagrange point, a stable location in space where the gravitational pulls of the Earth and the sun cancel each other out. From there, large space bodies could be detected early enough to give scientists decades of warning when an asteroid is heading for Earth. NEOCam is designed, tested, and ready to build, but the project is currently frozen because of a $40 million gap in NASA funding.
The status of NEOCam, according to Binzel, is a case-study in short-sightedness and a lack of leadership. Congress needs to raise NASA's Planetary Defense budget from its current $160 million to $200 million to get the telescope built and launched into space, a goal that would seem eminently doable within the strictures of 2020's $4.75 trillion government budget. But Binzel describes a current deadlock between NASA, Congress, and the Office of Management and Budget as a "cosmic game of chicken."
If we don't use our technology to defend the planet, "it would be the most epic failure in the history of science."
In an excruciatingly budget-conscious atmosphere, "No one wants to stick their neck out and take adult responsibility" for getting the funding allocated that would unfreeze the project, says Binzel. But, he adds, "We have a moral obligation to act."
NEOCam would not only spot the overwhelming majority of asteroids in Earth's vicinity, it would determine their size and pinpoint exactly where they are likely to strike the Earth. And it would allow us decades to act, according to Binzel. Repeated ramming by an international armada of specialized spacecraft could slightly change the trajectory of an asteroid, he says. Changing the trajectory only a tiny bit, given the scale of millions of miles and several decades for the course change to take effect, could cause an asteroid to miss the Earth altogether.
"So far we've been relying on luck," says Binzel, "but luck is not a plan." Now that we have the technology to discover what's careening through our space neighborhood, it's our ethical duty to deploy it. If we don't use our technology to gain the knowledge we need to defend the planet, Binzel concludes, "it would be the most epic failure in the history of science."
Should Congress green light the $40 million budget for the new asteroid-hunting telescope? @NASA #NASA #astroid— leapsmag (@leapsmag) 1564681293.0