Who’s Responsible for Curbing the Teen Vaping Epidemic?
E-cigarettes are big business. In 2017, American consumers bought more than $250 million in vapes and juice-filled pods, and spent $1 billion in 2018. By 2023, the global market could be worth $44 billion a year.
"My nine-year-old actually knows what Juuling is. In many cases the [school] bathroom is now referred to as 'the Juuling room.'"
Investors are trying to capitalize on the phenomenal growth. In July 2018, Juul Labs, the company that owns 70 percent of the U.S. e-cigarette market share, raised $1.25 billion at a $16 billion valuation, then sold a 35 percent stake to Phillip Morris USA owner Altria Group in December. The second transaction valued the company at $38 billion. While the traditional tobacco market remains much larger, it's projected to grow at less than two percent a year, making the attractiveness of the rapidly expanding e-cigarette market obvious.
While Juul and other e-cigarette manufacturers argue that their products help adults quit smoking – and there's some research to back this narrative up – much of the growth has been driven by children and teenagers. One CDC study showed a 48 percent rise in e-cigarette use by middle schoolers and a 78 percent increase by high schoolers between 2017 and 2018, a jump from 1.5 million kids to 3.6 million. In response to the study, F.D.A. Commissioner Scott Gottlieb said, "We see clear signs that youth use of electronic cigarettes has reached an epidemic proportion."
Another study found that teenagers between 15 and 17 were 16 times more likely to use Juul than people aged 25-34. In December, Surgeon General Jerome Adams said, "My nine-year-old actually knows what Juuling is. In many cases the [school] bathroom is now referred to as 'the Juuling room.'"
And the product is seriously addictive. A single Juul pod contains as much nicotine as a pack of 20 regular cigarettes. Considering that 90 percent of smokers are addicted by 18 years old, it's clear that steps need to be taken to combat the growing epidemic.
But who should take the lead? Juul and other e-cigarette companies? The F.D.A. and other government regulators? Schools? Parents?
The Surgeon General's website has a list of earnest possible texts that parents can send to their teens to dissuade them from Juuling, like: "Hope none of your friends use e-cigarettes around you. Even breathing the cloud they exhale can expose you to nicotine and chemicals that can be dangerous to your health." While parents can attempt to police their teens, many experts believe that the primary push should come at a federal level.
The regulation battle has already begun. In September, the F.D.A. announced that Juul had 60 days to show a plan that would prevent youth from getting their hands on the product. The result was for the company to announce that it wouldn't sell flavored pods in retail stores except for tobacco, menthol, and mint; Juul also shuttered its Instagram and Facebook accounts. These regulations mirrored an F.D.A. mandate two days later that required flavored e-cigarettes to be sold in closed-off areas. "This policy will make sure the fruity flavors are no longer accessible to kids in retail sites, plan and simple," Commissioner Gottlieb said when announcing the moves. "That's where they're getting access to the e-cigs and we intend to end those sales."
"There isn't a great history of the tobacco industry acting responsibly and being able to in any way police itself."
While so far, Gottlieb – who drew concerns about conflict of interest due to his past position as a board member at e-cigarette company, Kure – has pleased anti-smoking advocates with his efforts, some observers also argue that it needs to go further. "Overall, we didn't know what to expect when a new commissioner came in, but it's been quite refreshing how much attention has been paid to the tobacco industry by the F.D.A.," Robin Koval, CEO and president of Truth Initiative, said a day after the F.D.A. announced the proposed regulations. "It's important to have a start. I certainly want to give credit for that. But we were really hoping and feel that what was announced...doesn't go far enough."
The issue is the industry's inability or unwillingness to police itself in the past. Juul, however, claims that it's now proactively working to prevent young people from taking up its product. "Juul Labs and F.D.A. share a common goal – preventing youth from initiating on nicotine," a company representative said in an email. "To paraphrase Commissioner Gottlieb, we want to be the off-ramp for adult smokers to switch from cigarettes, not an on-ramp for America's youth to initiate on nicotine. We won't be successful in our mission to serve adult smokers if we don't narrow the on-ramp... Our intent was never to have youth use Juul products. But intent is not enough, the numbers are what matter, and the numbers tell us underage use of e-cigarette products is a problem. We must solve it."
Juul argues that its products help adults quit – even offering a calculator on the website showing how much people will save – and that it didn't target youth. But studies show otherwise. Furthermore, the youth smoking prevention curriculum the company released was poorly received. "It's what Philip Morris did years ago," said Bonnie Halpern-Felsher, a professor of pediatrics at Stanford who helped author a study on the program's faults. "They aren't talking about their named product. They are talking about vapes or e-cigarettes. Youth don't consider Juuls to be vapes or e-cigarettes. [Teens] don't talk about flavors. They don't talk about marketing. They did it to look good. But if you look at what [Juul] put together, it's a pretty awful curriculum that was put together pretty quickly."
The American Lung Association gave the FDA an "F" for failing to take mint and menthol e-cigs off the market, since those flavors remain popular with teens.
Add this all up, and in the end, it's hard to see the industry being able to police itself, critics say. Neither the past examples of other tobacco companies nor the present self-imposed regulations indicate that this will succeed.
"There isn't a great history of the tobacco industry acting responsibly and being able to in any way police itself," Koval said. "That job is best left to the F.D.A., and to the states and localities in what they can regulate and legislate to protect young people."
Halpern-Felsher agreed. "I think we need independent bodies. I really don't think that a voluntary ban or a regulation on the part of the industry is a good idea, nor do I think it will work," she said. "It's pretty much the same story, of repeating itself."
Just last week, the American Association of Pediatrics issued a new policy statement calling for the F.D.A. to immediately ban the sale of e-cigarettes to anyone under age 21 and to prohibit the online sale of vaping products and solutions, among other measures. And in its annual report, the American Lung Association gave the F.D.A. an "F" for failing to take mint and menthol e-cigs off the market, since those flavors remain popular with teens.
Few, if any people involved, want more regulation from the federal government. In an ideal world, this wouldn't be necessary. But many experts agree that it is. Anything else is just blowing smoke.
Fast for Longevity, with Less Hunger, with Dr. Valter Longo
You’ve probably heard about intermittent fasting, where you don’t eat for about 16 hours each day and limit the window where you’re taking in food to the remaining eight hours.
But there’s another type of fasting, called a fasting-mimicking diet, with studies pointing to important benefits. For today’s podcast episode, I chatted with Dr. Valter Longo, a biogerontologist at the University of Southern California, about all kinds of fasting, and particularly the fasting-mimicking diet, which minimizes hunger as much as possible. Going without food for a period of time is an example of good stress: challenges that work at the cellular level to boost health and longevity.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
If you’ve ever spent more than a few minutes looking into fasting, you’ve almost certainly come upon Dr. Longo's name. He is the author of the bestselling book, The Longevity Diet, and the best known researcher of fasting-mimicking diets.
With intermittent fasting, your body might begin to switch up its fuel type. It's usually running on carbs you get from food, which gets turned into glucose, but without food, your liver starts making something called ketones, which are molecules that may benefit the body in a number of ways.
With the fasting-mimicking diet, you go for several days eating only types of food that, in a way, keep themselves secret from your body. So at the level of your cells, the body still thinks that it’s fasting. This is the best of both worlds – you’re not completely starving because you do take in some food, and you’re getting the boosts to health that come with letting a fast run longer than intermittent fasting. In this episode, Dr. Longo talks about the growing number of studies showing why this could be very advantageous for health, as long as you undertake the diet no more than a few times per year.
Dr. Longo is the director of the Longevity Institute at USC’s Leonard Davis School of Gerontology, and the director of the Longevity and Cancer program at the IFOM Institute of Molecular Oncology in Milan. In addition, he's the founder and president of the Create Cures Foundation in L.A., which focuses on nutrition for the prevention and treatment of major chronic illnesses. In 2016, he received the Glenn Award for Research on Aging for the discovery of genes and dietary interventions that regulate aging and prevent diseases. Dr. Longo received his PhD in biochemistry from UCLA and completed his postdoc in the neurobiology of aging and Alzheimer’s at USC.
Show links:
Create Cures Foundation, founded by Dr. Longo: www.createcures.org
Dr. Longo's Facebook: https://www.facebook.com/profvalterlongo/
Dr. Longo's Instagram: https://www.instagram.com/prof_valterlongo/
Dr. Longo's book: The Longevity Diet
The USC Longevity Institute: https://gero.usc.edu/longevity-institute/
Dr. Longo's research on nutrition, longevity and disease: https://pubmed.ncbi.nlm.nih.gov/35487190/
Dr. Longo's research on fasting mimicking diet and cancer: https://pubmed.ncbi.nlm.nih.gov/34707136/
Full list of Dr. Longo's studies: https://pubmed.ncbi.nlm.nih.gov/?term=Longo%2C+Valter%5BAuthor%5D&sort=date
Research on MCT oil and Alzheimer's: https://alz-journals.onlinelibrary.wiley.com/doi/f...
Keto Mojo device for measuring ketones
Silkworms with spider DNA spin silk stronger than Kevlar
Story by Freethink
The study and copying of nature’s models, systems, or elements to address complex human challenges is known as “biomimetics.” Five hundred years ago, an elderly Italian polymath spent months looking at the soaring flight of birds. The result was Leonardo da Vinci’s biomimetic Codex on the Flight of Birds, one of the foundational texts in the science of aerodynamics. It’s the science that elevated the Wright Brothers and has yet to peak.
Today, biomimetics is everywhere. Shark-inspired swimming trunks, gecko-inspired adhesives, and lotus-inspired water-repellents are all taken from observing the natural world. After millions of years of evolution, nature has quite a few tricks up its sleeve. They are tricks we can learn from. And now, thanks to some spider DNA and clever genetic engineering, we have another one to add to the list.
The elusive spider silk
We’ve known for a long time that spider silk is remarkable, in ways that synthetic fibers can’t emulate. Nylon is incredibly strong (it can support a lot of force), and Kevlar is incredibly tough (it can absorb a lot of force). But neither is both strong and tough. In all artificial polymeric fibers, strength and toughness are mutually exclusive, and so we pick the material best for the job and make do.
Spider silk, a natural polymeric fiber, breaks this rule. It is somehow both strong and tough. No surprise, then, that spider silk is a source of much study.The problem, though, is that spiders are incredibly hard to cultivate — let alone farm. If you put them together, they will attack and kill each other until only one or a few survive. If you put 100 spiders in an enclosed space, they will go about an aggressive, arachnocidal Hunger Games. You need to give each its own space and boundaries, and a spider hotel is hard and costly. Silkworms, on the other hand, are peaceful and productive. They’ll hang around all day to make the silk that has been used in textiles for centuries. But silkworm silk is fragile. It has very limited use.
The elusive – and lucrative – trick, then, would be to genetically engineer a silkworm to produce spider-quality silk. So far, efforts have been fruitless. That is, until now.
We can have silkworms creating silk six times as tough as Kevlar and ten times as strong as nylon.
Spider-silkworms
Junpeng Mi and his colleagues working at Donghua University, China, used CRISPR gene-editing technology to recode the silk-creating properties of a silkworm. First, they took genes from Araneus ventricosus, an East Asian orb-weaving spider known for its strong silk. Then they placed these complex genes – genes that involve more than 100 amino acids – into silkworm egg cells. (This description fails to capture how time-consuming, technical, and laborious this was; it’s a procedure that requires hundreds of thousands of microinjections.)
This had all been done before, and this had failed before. Where Mi and his team succeeded was using a concept called “localization.” Localization involves narrowing in on a very specific location in a genome. For this experiment, the team from Donghua University developed a “minimal basic structure model” of silkworm silk, which guided the genetic modifications. They wanted to make sure they had the exactly right transgenic spider silk proteins. Mi said that combining localization with this basic structure model “represents a significant departure from previous research.” And, judging only from the results, he might be right. Their “fibers exhibited impressive tensile strength (1,299 MPa) and toughness (319 MJ/m3), surpassing Kevlar’s toughness 6-fold.”
A world of super-materials
Mi’s research represents the bursting of a barrier. It opens up hugely important avenues for future biomimetic materials. As Mi puts it, “This groundbreaking achievement effectively resolves the scientific, technical, and engineering challenges that have hindered the commercialization of spider silk, positioning it as a viable alternative to commercially synthesized fibers like nylon and contributing to the advancement of ecological civilization.”
Around 60 percent of our clothing is made from synthetic fibers like nylon, polyester, and acrylic. These plastics are useful, but often bad for the environment. They shed into our waterways and sometimes damage wildlife. The production of these fibers is a source of greenhouse gas emissions. Now, we have a “sustainable, eco-friendly high-strength and ultra-tough alternative.” We can have silkworms creating silk six times as tough as Kevlar and ten times as strong as nylon.
We shouldn’t get carried away. This isn’t going to transform the textiles industry overnight. Gene-edited silkworms are still only going to produce a comparatively small amount of silk – even if farmed in the millions. But, as Mi himself concedes, this is only the beginning. If Mi’s localization and structure-model techniques are as remarkable as they seem, then this opens up the door to a great many supermaterials.
Nature continues to inspire. We had the bird, the gecko, and the shark. Now we have the spider-silkworm. What new secrets will we unravel in the future? And in what exciting ways will it change the world?