Who’s Responsible for Curbing the Teen Vaping Epidemic?
E-cigarettes are big business. In 2017, American consumers bought more than $250 million in vapes and juice-filled pods, and spent $1 billion in 2018. By 2023, the global market could be worth $44 billion a year.
"My nine-year-old actually knows what Juuling is. In many cases the [school] bathroom is now referred to as 'the Juuling room.'"
Investors are trying to capitalize on the phenomenal growth. In July 2018, Juul Labs, the company that owns 70 percent of the U.S. e-cigarette market share, raised $1.25 billion at a $16 billion valuation, then sold a 35 percent stake to Phillip Morris USA owner Altria Group in December. The second transaction valued the company at $38 billion. While the traditional tobacco market remains much larger, it's projected to grow at less than two percent a year, making the attractiveness of the rapidly expanding e-cigarette market obvious.
While Juul and other e-cigarette manufacturers argue that their products help adults quit smoking – and there's some research to back this narrative up – much of the growth has been driven by children and teenagers. One CDC study showed a 48 percent rise in e-cigarette use by middle schoolers and a 78 percent increase by high schoolers between 2017 and 2018, a jump from 1.5 million kids to 3.6 million. In response to the study, F.D.A. Commissioner Scott Gottlieb said, "We see clear signs that youth use of electronic cigarettes has reached an epidemic proportion."
Another study found that teenagers between 15 and 17 were 16 times more likely to use Juul than people aged 25-34. In December, Surgeon General Jerome Adams said, "My nine-year-old actually knows what Juuling is. In many cases the [school] bathroom is now referred to as 'the Juuling room.'"
And the product is seriously addictive. A single Juul pod contains as much nicotine as a pack of 20 regular cigarettes. Considering that 90 percent of smokers are addicted by 18 years old, it's clear that steps need to be taken to combat the growing epidemic.
But who should take the lead? Juul and other e-cigarette companies? The F.D.A. and other government regulators? Schools? Parents?
The Surgeon General's website has a list of earnest possible texts that parents can send to their teens to dissuade them from Juuling, like: "Hope none of your friends use e-cigarettes around you. Even breathing the cloud they exhale can expose you to nicotine and chemicals that can be dangerous to your health." While parents can attempt to police their teens, many experts believe that the primary push should come at a federal level.
The regulation battle has already begun. In September, the F.D.A. announced that Juul had 60 days to show a plan that would prevent youth from getting their hands on the product. The result was for the company to announce that it wouldn't sell flavored pods in retail stores except for tobacco, menthol, and mint; Juul also shuttered its Instagram and Facebook accounts. These regulations mirrored an F.D.A. mandate two days later that required flavored e-cigarettes to be sold in closed-off areas. "This policy will make sure the fruity flavors are no longer accessible to kids in retail sites, plan and simple," Commissioner Gottlieb said when announcing the moves. "That's where they're getting access to the e-cigs and we intend to end those sales."
"There isn't a great history of the tobacco industry acting responsibly and being able to in any way police itself."
While so far, Gottlieb – who drew concerns about conflict of interest due to his past position as a board member at e-cigarette company, Kure – has pleased anti-smoking advocates with his efforts, some observers also argue that it needs to go further. "Overall, we didn't know what to expect when a new commissioner came in, but it's been quite refreshing how much attention has been paid to the tobacco industry by the F.D.A.," Robin Koval, CEO and president of Truth Initiative, said a day after the F.D.A. announced the proposed regulations. "It's important to have a start. I certainly want to give credit for that. But we were really hoping and feel that what was announced...doesn't go far enough."
The issue is the industry's inability or unwillingness to police itself in the past. Juul, however, claims that it's now proactively working to prevent young people from taking up its product. "Juul Labs and F.D.A. share a common goal – preventing youth from initiating on nicotine," a company representative said in an email. "To paraphrase Commissioner Gottlieb, we want to be the off-ramp for adult smokers to switch from cigarettes, not an on-ramp for America's youth to initiate on nicotine. We won't be successful in our mission to serve adult smokers if we don't narrow the on-ramp... Our intent was never to have youth use Juul products. But intent is not enough, the numbers are what matter, and the numbers tell us underage use of e-cigarette products is a problem. We must solve it."
Juul argues that its products help adults quit – even offering a calculator on the website showing how much people will save – and that it didn't target youth. But studies show otherwise. Furthermore, the youth smoking prevention curriculum the company released was poorly received. "It's what Philip Morris did years ago," said Bonnie Halpern-Felsher, a professor of pediatrics at Stanford who helped author a study on the program's faults. "They aren't talking about their named product. They are talking about vapes or e-cigarettes. Youth don't consider Juuls to be vapes or e-cigarettes. [Teens] don't talk about flavors. They don't talk about marketing. They did it to look good. But if you look at what [Juul] put together, it's a pretty awful curriculum that was put together pretty quickly."
The American Lung Association gave the FDA an "F" for failing to take mint and menthol e-cigs off the market, since those flavors remain popular with teens.
Add this all up, and in the end, it's hard to see the industry being able to police itself, critics say. Neither the past examples of other tobacco companies nor the present self-imposed regulations indicate that this will succeed.
"There isn't a great history of the tobacco industry acting responsibly and being able to in any way police itself," Koval said. "That job is best left to the F.D.A., and to the states and localities in what they can regulate and legislate to protect young people."
Halpern-Felsher agreed. "I think we need independent bodies. I really don't think that a voluntary ban or a regulation on the part of the industry is a good idea, nor do I think it will work," she said. "It's pretty much the same story, of repeating itself."
Just last week, the American Association of Pediatrics issued a new policy statement calling for the F.D.A. to immediately ban the sale of e-cigarettes to anyone under age 21 and to prohibit the online sale of vaping products and solutions, among other measures. And in its annual report, the American Lung Association gave the F.D.A. an "F" for failing to take mint and menthol e-cigs off the market, since those flavors remain popular with teens.
Few, if any people involved, want more regulation from the federal government. In an ideal world, this wouldn't be necessary. But many experts agree that it is. Anything else is just blowing smoke.
Autonomous, indoor farming gives a boost to crops
The glass-encased cabinet looks like a display meant to hold reasonably priced watches, or drugstore beauty creams shipped from France. But instead of this stagnant merchandise, each of its five shelves is overgrown with leaves — moss-soft pea sprouts, spikes of Lolla rosa lettuces, pale bok choy, dark kale, purple basil or red-veined sorrel or green wisps of dill. The glass structure isn’t a cabinet, but rather a “micro farm.”
The gadget is on display at the Richmond, Virginia headquarters of Babylon Micro-Farms, a company that aims to make indoor farming in the U.S. more accessible and sustainable. Babylon’s soilless hydroponic growing system, which feeds plants via nutrient-enriched water, allows chefs on cruise ships, cafeterias and elsewhere to provide home-grown produce to patrons, just seconds after it’s harvested. Currently, there are over 200 functioning systems, either sold or leased to customers, and more of them are on the way.
The chef-farmers choose from among 45 types of herb and leafy-greens seeds, plop them into grow trays, and a few weeks later they pick and serve. While success is predicated on at least a small amount of these humans’ care, the systems are autonomously surveilled round-the-clock from Babylon’s base of operations. And artificial intelligence is helping to run the show.
Babylon piloted the use of specialized cameras that take pictures in different spectrums to gather some less-obvious visual data about plants’ wellbeing and alert people if something seems off.
Imagine consistently perfect greens and tomatoes and strawberries, grown hyper-locally, using less water, without chemicals or environmental contaminants. This is the hefty promise of controlled environment agriculture (CEA) — basically, indoor farms that can be hydroponic, aeroponic (plant roots are suspended and fed through misting), or aquaponic (where fish play a role in fertilizing vegetables). But whether they grow 4,160 leafy-green servings per year, like one Babylon farm, or millions of servings, like some of the large, centralized facilities starting to supply supermarkets across the U.S., they seek to minimize failure as much as possible.
Babylon’s soilless hydroponic growing system
Courtesy Babylon Micro-Farms
Here, AI is starting to play a pivotal role. CEA growers use it to help “make sense of what’s happening” to the plants in their care, says Scott Lowman, vice president of applied research at the Institute for Advanced Learning and Research (IALR) in Virginia, a state that’s investing heavily in CEA companies. And although these companies say they’re not aiming for a future with zero human employees, AI is certainly poised to take a lot of human farming intervention out of the equation — for better and worse.
Most of these companies are compiling their own data sets to identify anything that might block the success of their systems. Babylon had already integrated sensor data into its farms to measure heat and humidity, the nutrient content of water, and the amount of light plants receive. Last year, they got a National Science Foundation grant that allowed them to pilot the use of specialized cameras that take pictures in different spectrums to gather some less-obvious visual data about plants’ wellbeing and alert people if something seems off. “Will this plant be healthy tomorrow? Are there things…that the human eye can't see that the plant starts expressing?” says Amandeep Ratte, the company’s head of data science. “If our system can say, Hey, this plant is unhealthy, we can reach out to [users] preemptively about what they’re doing wrong, or is there a disease at the farm?” Ratte says. The earlier the better, to avoid crop failures.
Natural light accounts for 70 percent of Greenswell Growers’ energy use on a sunny day.
Courtesy Greenswell Growers
IALR’s Lowman says that other CEA companies are developing their AI systems to account for the different crops they grow — lettuces come in all shapes and sizes, after all, and each has different growing needs than, for example, tomatoes. The ways they run their operations differs also. Babylon is unusual in its decentralized structure. But centralized growing systems with one main location have variabilities, too. AeroFarms, which recently declared bankruptcy but will continue to run its 140,000-square foot vertical operation in Danville, Virginia, is entirely enclosed and reliant on the intense violet glow of grow lights to produce microgreens.
Different companies have different data needs. What data is essential to AeroFarms isn’t quite the same as for Greenswell Growers located in Goochland County, Virginia. Raising four kinds of lettuce in a 77,000-square-foot automated hydroponic greenhouse, the vagaries of naturally available light, which accounts for 70 percent of Greenswell’s energy use on a sunny day, affect operations. Their tech needs to account for “outside weather impacts,” says president Carl Gupton. “What adjustments do we have to make inside of the greenhouse to offset what's going on outside environmentally, to give that plant optimal conditions? When it's 85 percent humidity outside, the system needs to do X, Y and Z to get the conditions that we want inside.”
AI will help identify diseases, as well as when a plant is thirsty or overly hydrated, when it needs more or less calcium, phosphorous, nitrogen.
Nevertheless, every CEA system has the same core needs — consistent yield of high quality crops to keep up year-round supply to customers. Additionally, “Everybody’s got the same set of problems,” Gupton says. Pests may come into a facility with seeds. A disease called pythium, one of the most common in CEA, can damage plant roots. “Then you have root disease pressures that can also come internally — a change in [growing] substrate can change the way the plant performs,” Gupton says.
AI will help identify diseases, as well as when a plant is thirsty or overly hydrated, when it needs more or less calcium, phosphorous, nitrogen. So, while companies amass their own hyper-specific data sets, Lowman foresees a time within the next decade “when there will be some type of [open-source] database that has the most common types of plant stress identified” that growers will be able to tap into. Such databases will “create a community and move the science forward,” says Lowman.
In fact, IALR is working on assembling images for just such a database now. On so-called “smart tables” inside an Institute lab, a team is growing greens and subjects them to various stressors. Then, they’re administering treatments while taking images of every plant every 15 minutes, says Lowman. Some experiments generate 80,000 images; the challenge lies in analyzing and annotating the vast trove of them, marking each one to reflect outcome—for example increasing the phosphate delivery and the plant’s response to it. Eventually, they’ll be fed into AI systems to help them learn.
For all the enthusiasm surrounding this technology, it’s not without downsides. Training just one AI system can emit over 250,000 pounds of carbon dioxide, according to MIT Technology Review. AI could also be used “to enhance environmental benefit for CEA and optimize [its] energy consumption,” says Rozita Dara, a computer science professor at the University of Guelph in Canada, specializing in AI and data governance, “but we first need to collect data to measure [it].”
The chef-farmers can choose from 45 types of herb and leafy-greens seeds.
Courtesy Babylon Micro-Farms
Any system connected to the Internet of Things is also vulnerable to hacking; if CEA grows to the point where “there are many of these similar farms, and you're depending on feeding a population based on those, it would be quite scary,” Dara says. And there are privacy concerns, too, in systems where imaging is happening constantly. It’s partly for this reason, says Babylon’s Ratte, that the company’s in-farm cameras all “face down into the trays, so the only thing [visible] is pictures of plants.”
Tweaks to improve AI for CEA are happening all the time. Greenswell made its first harvest in 2022 and now has annual data points they can use to start making more intelligent choices about how to feed, water, and supply light to plants, says Gupton. Ratte says he’s confident Babylon’s system can already “get our customers reliable harvests. But in terms of how far we have to go, it's a different problem,” he says. For example, if AI could detect whether the farm is mostly empty—meaning the farm’s user hasn’t planted a new crop of greens—it can alert Babylon to check “what's going on with engagement with this user?” Ratte says. “Do they need more training? Did the main person responsible for the farm quit?”
Lowman says more automation is coming, offering greater ability for systems to identify problems and mitigate them on the spot. “We still have to develop datasets that are specific, so you can have a very clear control plan, [because] artificial intelligence is only as smart as what we tell it, and in plant science, there's so much variation,” he says. He believes AI’s next level will be “looking at those first early days of plant growth: when the seed germinates, how fast it germinates, what it looks like when it germinates.” Imaging all that and pairing it with AI, “can be a really powerful tool, for sure.”
Scientists make progress with growing organs for transplants
Story by Big Think
For over a century, scientists have dreamed of growing human organs sans humans. This technology could put an end to the scarcity of organs for transplants. But that’s just the tip of the iceberg. The capability to grow fully functional organs would revolutionize research. For example, scientists could observe mysterious biological processes, such as how human cells and organs develop a disease and respond (or fail to respond) to medication without involving human subjects.
Recently, a team of researchers from the University of Cambridge has laid the foundations not just for growing functional organs but functional synthetic embryos capable of developing a beating heart, gut, and brain. Their report was published in Nature.
The organoid revolution
In 1981, scientists discovered how to keep stem cells alive. This was a significant breakthrough, as stem cells have notoriously rigorous demands. Nevertheless, stem cells remained a relatively niche research area, mainly because scientists didn’t know how to convince the cells to turn into other cells.
Then, in 1987, scientists embedded isolated stem cells in a gelatinous protein mixture called Matrigel, which simulated the three-dimensional environment of animal tissue. The cells thrived, but they also did something remarkable: they created breast tissue capable of producing milk proteins. This was the first organoid — a clump of cells that behave and function like a real organ. The organoid revolution had begun, and it all started with a boob in Jello.
For the next 20 years, it was rare to find a scientist who identified as an “organoid researcher,” but there were many “stem cell researchers” who wanted to figure out how to turn stem cells into other cells. Eventually, they discovered the signals (called growth factors) that stem cells require to differentiate into other types of cells.
For a human embryo (and its organs) to develop successfully, there needs to be a “dialogue” between these three types of stem cells.
By the end of the 2000s, researchers began combining stem cells, Matrigel, and the newly characterized growth factors to create dozens of organoids, from liver organoids capable of producing the bile salts necessary for digesting fat to brain organoids with components that resemble eyes, the spinal cord, and arguably, the beginnings of sentience.
Synthetic embryos
Organoids possess an intrinsic flaw: they are organ-like. They share some characteristics with real organs, making them powerful tools for research. However, no one has found a way to create an organoid with all the characteristics and functions of a real organ. But Magdalena Żernicka-Goetz, a developmental biologist, might have set the foundation for that discovery.
Żernicka-Goetz hypothesized that organoids fail to develop into fully functional organs because organs develop as a collective. Organoid research often uses embryonic stem cells, which are the cells from which the developing organism is created. However, there are two other types of stem cells in an early embryo: stem cells that become the placenta and those that become the yolk sac (where the embryo grows and gets its nutrients in early development). For a human embryo (and its organs) to develop successfully, there needs to be a “dialogue” between these three types of stem cells. In other words, Żernicka-Goetz suspected the best way to grow a functional organoid was to produce a synthetic embryoid.
As described in the aforementioned Nature paper, Żernicka-Goetz and her team mimicked the embryonic environment by mixing these three types of stem cells from mice. Amazingly, the stem cells self-organized into structures and progressed through the successive developmental stages until they had beating hearts and the foundations of the brain.
“Our mouse embryo model not only develops a brain, but also a beating heart [and] all the components that go on to make up the body,” said Żernicka-Goetz. “It’s just unbelievable that we’ve got this far. This has been the dream of our community for years and major focus of our work for a decade and finally we’ve done it.”
If the methods developed by Żernicka-Goetz’s team are successful with human stem cells, scientists someday could use them to guide the development of synthetic organs for patients awaiting transplants. It also opens the door to studying how embryos develop during pregnancy.