Who’s Responsible If a Scientist’s Work Is Used for Harm?
Are scientists morally responsible for the uses of their work? To some extent, yes. Scientists are responsible for both the uses that they intend with their work and for some of the uses they don't intend. This is because scientists bear the same moral responsibilities that we all bear, and we are all responsible for the ends we intend to help bring about and for some (but not all) of those we don't.
To not think about plausible unintended effects is to be negligent -- and to recognize, but do nothing about, such effects is to be reckless.
It should be obvious that the intended outcomes of our work are within our sphere of moral responsibility. If a scientist intends to help alleviate hunger (by, for example, breeding new drought-resistant crop strains), and they succeed in that goal, they are morally responsible for that success, and we would praise them accordingly. If a scientist intends to produce a new weapon of mass destruction (by, for example, developing a lethal strain of a virus), and they are unfortunately successful, they are morally responsible for that as well, and we would blame them accordingly. Intention matters a great deal, and we are most praised or blamed for what we intend to accomplish with our work.
But we are responsible for more than just the intended outcomes of our choices. We are also responsible for unintended but readily foreseeable uses of our work. This is in part because we are all responsible for thinking not just about what we intend, but also what else might follow from our chosen course of action. In cases where severe and egregious harms are plausible, we should act in ways that strive to prevent such outcomes. To not think about plausible unintended effects is to be negligent -- and to recognize, but do nothing about, such effects is to be reckless. To be negligent or reckless is to be morally irresponsible, and thus blameworthy. Each of us should think beyond what we intend to do, reflecting carefully on what our course of action could entail, and adjusting our choices accordingly.
It is this area, of unintended but readily foreseeable (and plausible) impacts, that often creates the most difficulty for scientists. Many scientists can become so focused on their work (which is often demanding) and so focused on achieving their intended goals, that they fail to stop and think about other possible implications.
Debates over "dual-use" research exemplify these concerns, where harmful potential uses of research might mean the work should not be pursued, or the full publication of results should be curtailed. When researchers perform gain-of-function research, pushing viruses to become more transmissible or more deadly, it is clear how dangerous such work could be in the wrong hands. In these cases, it is not enough to simply claim that such uses were not intended and that it is someone else's job to ensure that the materials remain secure. We know securing infectious materials can be error-prone (recall events at the CDC and the FDA).
In some areas of research, scientists are already worrying about the unintended possible downsides of their work.
Further, securing viral strains does nothing to secure the knowledge that could allow for reproducing the viral strain (particularly when the methodologies and/or genetic sequences are published after the fact, as was the case for H5N1 and horsepox). It is, in fact, the researcher's moral responsibility to be concerned not just about the biosafety controls in their own labs, but also which projects should be pursued (Will the gain in knowledge be worth the possible downsides?) and which results should be published (Will a result make it easier for a malicious actor to deploy a new bioweapon?).
We have not yet had (to my knowledge) a use of gain-of-function research to harm people. If that does happen, those who actually released the virus on the public will be most blameworthy–-intentions do matter. But the scientists who developed the knowledge deployed by the malicious actors may also be held blameworthy, especially if the malicious use was easy to foresee, even if it was not pleasant to think about.
In some areas of research, scientists are already worrying about the unintended possible downsides of their work. Scientists investigating gene drives have thought beyond the immediate desired benefits of their work (e.g. reducing invasive species populations) and considered the possible spread of gene drives to untargeted populations. Modeling the impacts of such possibilities has led some researchers to pull back from particular deployment possibilities. It is precisely such thinking through both the intended and unintended possible outcomes that is needed for responsible work.
The world has gotten too small, too vulnerable for scientists to act as though they are not responsible for the uses of their work, intended or not. They must seek to ensure that, as the recent AAAS Statement on Scientific Freedom and Responsibility demands, their work is done "in the interest of humanity." This requires thinking beyond one's intentions, potentially drawing on the expertise of others, sometimes from other disciplines, to help explore implications. The need for such thinking does not guarantee good outcomes, but it will ensure that we are doing the best we can, and that is what being morally responsible is all about.
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Here are the promising studies covered in this week's Friday Five, featuring interviews with Dr. David Spiegel, associate chair of psychiatry and behavioral sciences at Stanford, and Dr. Filip Swirski, professor of medicine and cardiology at the Icahn School of Medicine at Mount Sinai.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the promising studies covered in this week's Friday Five, featuring interviews with Dr. David Spiegel, associate chair of psychiatry and behavioral sciences at Stanford, and Dr. Filip Swirski, professor of medicine and cardiology at the Icahn School of Medicine at Mount Sinai.
- Breathing this way cuts down on anxiety*
- Could your fasting regimen make you sick?
- This type of job makes men more virile
- 3D printed hearts could save your life
- Yet another potential benefit of metformin
* This video with Dr. Andrew Huberman of Stanford shows exactly how to do the breathing practice.
This podcast originally aired on March 3, 2023.
Breakthrough drones deliver breast milk in rural Uruguay
Until three months ago, nurse Leopoldina Castelli used to send bottles of breast milk to nourish babies in the remote areas of Tacuarembó, in northern Uruguay, by way of ambulances or military trucks. That is, if the vehicles were available and the roads were passable, which wasn’t always the case. Now, five days per week, she stands by a runway at the hospital, located in Tacuarembó’s capital, watching a drone take off and disappear from view, carrying the milk to clinics that serve the babies’ families.
The drones can fly as far as 62 miles. Long distances and rough roads are no obstacles. The babies, whose mothers struggle to produce sufficient milk and cannot afford formula, now receive ample supplies for healthy growth. “Today we provided nourishment to a significantly larger number of children, and this is something that deeply moves me,” Castelli says.
About two decades ago, the Tacuarembó hospital established its own milk bank, supported by donations from mothers across Tacuarembó. Over the years, the bank has provided milk to infants immediately after birth. It's helped drive a “significant and sustained” decrease in infant mortality, says the hospital director, Ciro Ferreira.
But these children need breast milk throughout their first six months, if not longer, to prevent malnutrition and other illnesses that are prevalent in rural Tacuarembó. Ground transport isn't quick or reliable enough to meet this goal. It can take several hours, during which the milk may spoil due to a lack of refrigeration.
The battery-powered drones have been the difference-maker. The project to develop them, financed by the UNICEF Innovation Fund, is the first of its kind in Latin America. To Castelli, it's nothing short of a revolution. Tacuarembó Hospital, along with three rural clinics in the most impoverished part of Uruguay, are its leaders.
"This marks the first occasion when the public health system has been directly impacted [by our technology]," says Sebastián Macías, the CEO and co-founder of Cielum, an engineer at the University Republic, which collaborated on the technology with a Uruguayan company called Cielum and a Swiss company, Rigitech.
The drone can achieve a top speed of up to 68 miles per hour, is capable of flying in light rain, and can withstand winds of up to 30 miles per hour at a maximum altitude of 120 meters.
"We have succeeded in embracing the mothers from rural areas who were previously slipping through the cracks of the system," says Ferreira, the hospital director. He envisions an expansion of the service so it can improve health for children in other rural areas.
Nurses load the drone for breast milk delivery.
Sebastián Macías - Cielum
The star aircraft
The drone, which costs approximately $70,000, was specifically designed for the transportation of biological materials. Constructed from carbon fiber, it's three meters wide, two meters long and weighs 42 pounds when fully loaded. Additionally, it is equipped with a ballistic parachute to ensure a safe descent in case the technology fails in midair. Furthermore, it can achieve a top speed of 68 miles per hour, fly in light rain, and withstand winds of 30 miles per hour at a height of 120 meters.
Inside, the drones feature three refrigerated compartments that maintain a stable temperature and adhere to the United Nations’ standards for transporting perishable products. These compartments accommodate four gallons or 6.5 pounds of cargo. According to Macías, that's more than sufficient to carry a week’s worth of milk for one infant on just two flights, or 3.3 pounds of blood samples collected in a rural clinic.
“From an energy perspective, it serves as an efficient mode of transportation and helps reduce the carbon emissions associated with using an ambulance,” said Macías. Plus, the ambulance can remain available in the town.
Macías, who has led software development for the drone, and three other technicians have been trained to operate it. They ensure that the drone stays on course, monitor weather conditions and implement emergency changes when needed. The software displays the in-flight positions of the drones in relation to other aircraft. All agricultural planes in the region receive notification about the drone's flight path, departure and arrival times, and current location.
The future: doubling the drone's reach
Forty-five days after its inaugural flight, the drone is now making five flights per week. It serves two routes: 34 miles to Curtina and 31 miles to Tambores. The drone reaches Curtina in 50 minutes while ambulances take double that time, partly due to the subpar road conditions. Pueblo Ansina, located 40 miles from the state capital, will soon be introduced as the third destination.
Overall, the drone’s schedule is expected to become much busier, with plans to accomplish 20 weekly flights by the end of October and over 30 in 2024. Given the drone’s speed, Macías is contemplating using it to transport cancer medications as well.
“When it comes to using drones to save lives, for us, the sky is not the limit," says Ciro Ferreira, Tacuarembó hospital director.
In future trips to clinics in San Gregorio de Polanco and Caraguatá, the drone will be pushed to the limit. At these locations, a battery change will be necessary, but it's worth it. The route will cover up to 10 rural Tacuarembó clinics plus one hospital outside Tacuarembó, in Rivera, close to the border with Brazil. Currently, because of a shortage of ambulances, the delivery of pasteurized breast milk to Rivera only occurs every 15 days.
“The expansion to Rivera will include 100,000 more inhabitants, doubling the healthcare reach,” said Ferreira, the director of the Tacuarembó Hospital. In itself, Ferreira's hospital serves the medical needs of 500,000 people as one of the largest in Uruguay's interior.
Alejandro Del Estal, an aeronautical engineer at Rigitech, traveled from Europe to Tacuarembó to oversee the construction of the vertiports – the defined areas that can support drones’ take-off and landing – and the first flights. He pointed out that once the flight network between hospitals and rural polyclinics is complete in Uruguay, it will rank among the five most extensive drone routes in the world for any activity, including healthcare and commercial uses.
Cielum is already working on the long-term sustainability of the project. The aim is to have more drones operating in other rural regions in the western and northern parts of the country. The company has received inquiries from Argentina and Colombia, but, as Macías pointed out, they are exercising caution when making commitments. Expansion will depend on the development of each country’s regulations for airspace use.
For Ferreira, the advantages in Uruguay are evident: "This approach enables us to bridge the geographical gap, enhance healthcare accessibility, and reduce the time required for diagnosing and treating rural inhabitants, all without the necessity of them traveling to the hospital,” he says. "When it comes to using drones to save lives, for us, the sky is not the limit."