Why the Pope Should Officially Embrace Biotechnology
[Editor's Note: This essay is in response to our current Big Question series: "How can the religious and scientific communities work together to foster a culture that is equipped to face humanity's biggest challenges?"]
In May 2015, Pope Francis issued an encyclical with the subtitle "On Care for Our Common Home." The letter addressed various environmental issues, such as pollution and climate change, and it reminded all of us that we are to steward the Earth, not plunder it.
Without question, biotechnology has saved the lives of millions – perhaps billions – of people.
The Pope's missive demonstrates that he is both theologically sound and scientifically literate, a very rare combination. That is why he should now author an encyclical urging the world to embrace the life-giving promise of biotechnology.
Without question, biotechnology has saved the lives of millions – perhaps billions – of people. Arguably, vaccines were the most important invention in the history of mankind. It is thought that, in the 20th century alone, at least 300 million people were killed by smallpox. Today, the number is zero, thanks to vaccination. Other killers, such as measles, diphtheria, meningitis, and diarrhea, are kept at bay because of vaccines.
Biotechnology has also saved the lives of diabetics. At one time, insulin was extracted from pig pancreases, and there were fears that we would run out of it. Then, in the 1970s, crucial advances in biotechnology allowed for the gene that encodes human insulin to be expressed in bacteria. Today, diabetics can get extremely pure insulin thanks to this feat of genetic modification.
Likewise, genetic modification has improved the environment and the lives of farmers all over the world, none more so than those living in developing countries. According to a meta-analysis published in PLoS ONE, GMOs have "reduced chemical pesticide use by 37%, increased crop yields by 22%, and increased farmer profits by 68%."
Even better, GMOs also could help improve the lives of non-farmers. In poor parts of the world, malnutrition is still extremely common. People whose diets consist mostly of rice, for example, often suffer from vitamin A deficiency, which can lead to blindness. Golden Rice, which was genetically modified to contain a vitamin A precursor, was created and given away for free in an act of humanitarianism. Other researchers have created a genetically modified cassava to help combat iron and zinc deficiencies among children in Africa.
Despite these groundbreaking advances, the public is turning against biotechnology.
Biotechnology has also helped women with mitochondrial disease bear healthy children. Children inherit their mitochondria, the powerhouses of our cells, solely from their mothers. Mitochondrial defects can have devastating health consequences. Using what is colloquially called the "three-parent embryo technique," a healthy woman donates an egg. The nucleus of that egg is removed, and that of the mother-to-be is put in its place. Then, the egg is fertilized using conventional in vitro fertilization. In April 2016, the world's first baby was born using this technique.
Yet, despite these groundbreaking advances, the public is turning against biotechnology. Across America and Europe, anti-vaccine activists have helped usher in a resurgence of entirely preventable diseases, such as measles. Anti-GMO activists have blocked the implementation of Golden Rice. And other activists decry reproductive technology as "playing God."
Nonsense. These technologies improve overall welfare and save lives. Those laudable goals are shared by all the world's major religions as part of their efforts to improve the human condition. That is why it is vitally important, if science is to succeed in eradicating illness, that it gets a full-throated endorsement from powerful religious leaders.
In his 2015 encyclical, Pope Francis wrote:
Any technical solution which science claims to offer will be powerless to solve the serious problems of our world if humanity loses its compass, if we lose sight of the great motivations which make it possible for us to live in harmony, to make sacrifices and to treat others well.
He is correct. Indeed, when people are protesting life-saving vaccines, we have lost not only our moral compass but our intellect, too.
Imagine the impact he could have if Pope Francis issued an encyclical titled "On Protecting Our Most Vulnerable." He could explain that some children, stricken with cancer or suffering from an immunological disease, are unable to receive vaccines. Therefore, we all have a moral duty to be vaccinated in order to protect them through herd immunity.
Or imagine the potential impact of an encyclical titled "On Feeding the World," in which the Pope explained that rich countries have an obligation to poorer ones to feed them by all means necessary, including the use of biotechnology. If Muslim, Buddhist, and Hindu scholars throughout Asia and Africa also embraced the message, its impact could be multiplied.
In order to be successful, science needs religion; in order to be practical, religion needs science.
In order to be successful, science needs religion; in order to be practical, religion needs science.
Unfortunately, in discussions of the relationship between science and religion, we too often focus on the few areas in which they conflict. But this misses a great opportunity. By combining technological advances with moral authority, science and religion can work together to save the world.
[Ed. Note: Don't miss the other perspectives in this Big Question series, from a Rabbi/M.D. and a Reverend/molecular geneticist.]
A new type of cancer therapy is shrinking deadly brain tumors with just one treatment
Few cancers are deadlier than glioblastomas—aggressive and lethal tumors that originate in the brain or spinal cord. Five years after diagnosis, less than five percent of glioblastoma patients are still alive—and more often, glioblastoma patients live just 14 months on average after receiving a diagnosis.
But an ongoing clinical trial at Mass General Cancer Center is giving new hope to glioblastoma patients and their families. The trial, called INCIPIENT, is meant to evaluate the effects of a special type of immune cell, called CAR-T cells, on patients with recurrent glioblastoma.
How CAR-T cell therapy works
CAR-T cell therapy is a type of cancer treatment called immunotherapy, where doctors modify a patient’s own immune system specifically to find and destroy cancer cells. In CAR-T cell therapy, doctors extract the patient’s T-cells, which are immune system cells that help fight off disease—particularly cancer. These T-cells are harvested from the patient and then genetically modified in a lab to produce proteins on their surface called chimeric antigen receptors (thus becoming CAR-T cells), which makes them able to bind to a specific protein on the patient’s cancer cells. Once modified, these CAR-T cells are grown in the lab for several weeks so that they can multiply into an army of millions. When enough cells have been grown, these super-charged T-cells are infused back into the patient where they can then seek out cancer cells, bind to them, and destroy them. CAR-T cell therapies have been approved by the US Food and Drug Administration (FDA) to treat certain types of lymphomas and leukemias, as well as multiple myeloma, but haven’t been approved to treat glioblastomas—yet.
CAR-T cell therapies don’t always work against solid tumors, such as glioblastomas. Because solid tumors contain different kinds of cancer cells, some cells can evade the immune system’s detection even after CAR-T cell therapy, according to a press release from Massachusetts General Hospital. For the INCIPIENT trial, researchers modified the CAR-T cells even further in hopes of making them more effective against solid tumors. These second-generation CAR-T cells (called CARv3-TEAM-E T cells) contain special antibodies that attack EFGR, a protein expressed in the majority of glioblastoma tumors. Unlike other CAR-T cell therapies, these particular CAR-T cells were designed to be directly injected into the patient’s brain.
The INCIPIENT trial results
The INCIPIENT trial involved three patients who were enrolled in the study between March and July 2023. All three patients—a 72-year-old man, a 74-year-old man, and a 57-year-old woman—were treated with chemo and radiation and enrolled in the trial with CAR-T cells after their glioblastoma tumors came back.
The results, which were published earlier this year in the New England Journal of Medicine (NEJM), were called “rapid” and “dramatic” by doctors involved in the trial. After just a single infusion of the CAR-T cells, each patient experienced a significant reduction in their tumor sizes. Just two days after receiving the infusion, the glioblastoma tumor of the 72-year-old man decreased by nearly twenty percent. Just two months later the tumor had shrunk by an astonishing 60 percent, and the change was maintained for more than six months. The most dramatic result was in the 57-year-old female patient, whose tumor shrank nearly completely after just one infusion of the CAR-T cells.
The results of the INCIPIENT trial were unexpected and astonishing—but unfortunately, they were also temporary. For all three patients, the tumors eventually began to grow back regardless of the CAR-T cell infusions. According to the press release from MGH, the medical team is now considering treating each patient with multiple infusions or prefacing each treatment with chemotherapy to prolong the response.
While there is still “more to do,” says co-author of the study neuro-oncologist Dr. Elizabeth Gerstner, the results are still promising. If nothing else, these second-generation CAR-T cell infusions may someday be able to give patients more time than traditional treatments would allow.
“These results are exciting but they are also just the beginning,” says Dr. Marcela Maus, a doctor and professor of medicine at Mass General who was involved in the clinical trial. “They tell us that we are on the right track in pursuing a therapy that has the potential to change the outlook for this intractable disease.”
Since the early 2000s, AI systems have eliminated more than 1.7 million jobs, and that number will only increase as AI improves. Some research estimates that by 2025, AI will eliminate more than 85 million jobs.
But for all the talk about job security, AI is also proving to be a powerful tool in healthcare—specifically, cancer detection. One recently published study has shown that, remarkably, artificial intelligence was able to detect 20 percent more cancers in imaging scans than radiologists alone.
Published in The Lancet Oncology, the study analyzed the scans of 80,000 Swedish women with a moderate hereditary risk of breast cancer who had undergone a mammogram between April 2021 and July 2022. Half of these scans were read by AI and then a radiologist to double-check the findings. The second group of scans was read by two researchers without the help of AI. (Currently, the standard of care across Europe is to have two radiologists analyze a scan before diagnosing a patient with breast cancer.)
The study showed that the AI group detected cancer in 6 out of every 1,000 scans, while the radiologists detected cancer in 5 per 1,000 scans. In other words, AI found 20 percent more cancers than the highly-trained radiologists.
Scientists have been using MRI images (like the ones pictured here) to train artificial intelligence to detect cancers earlier and with more accuracy. Here, MIT's AI system, MIRAI, looks for patterns in a patient's mammograms to detect breast cancer earlier than ever before. news.mit.edu
But even though the AI was better able to pinpoint cancer on an image, it doesn’t mean radiologists will soon be out of a job. Dr. Laura Heacock, a breast radiologist at NYU, said in an interview with CNN that radiologists do much more than simply screening mammograms, and that even well-trained technology can make errors. “These tools work best when paired with highly-trained radiologists who make the final call on your mammogram. Think of it as a tool like a stethoscope for a cardiologist.”
AI is still an emerging technology, but more and more doctors are using them to detect different cancers. For example, researchers at MIT have developed a program called MIRAI, which looks at patterns in patient mammograms across a series of scans and uses an algorithm to model a patient's risk of developing breast cancer over time. The program was "trained" with more than 200,000 breast imaging scans from Massachusetts General Hospital and has been tested on over 100,000 women in different hospitals across the world. According to MIT, MIRAI "has been shown to be more accurate in predicting the risk for developing breast cancer in the short term (over a 3-year period) compared to traditional tools." It has also been able to detect breast cancer up to five years before a patient receives a diagnosis.
The challenges for cancer-detecting AI tools now is not just accuracy. AI tools are also being challenged to perform consistently well across different ages, races, and breast density profiles, particularly given the increased risks that different women face. For example, Black women are 42 percent more likely than white women to die from breast cancer, despite having nearly the same rates of breast cancer as white women. Recently, an FDA-approved AI device for screening breast cancer has come under fire for wrongly detecting cancer in Black patients significantly more often than white patients.
As AI technology improves, radiologists will be able to accurately scan a more diverse set of patients at a larger volume than ever before, potentially saving more lives than ever.