Why Your Brain Falls for Misinformation – And How to Avoid It
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
Whenever you hear something repeated, it feels more true. In other words, repetition makes any statement seem more accurate. So anything you hear again will resonate more each time it's said.
Do you see what I did there? Each of the three sentences above conveyed the same message. Yet each time you read the next sentence, it felt more and more true. Cognitive neuroscientists and behavioral economists like myself call this the "illusory truth effect."
Go back and recall your experience reading the first sentence. It probably felt strange and disconcerting, perhaps with a note of resistance, as in "I don't believe things more if they're repeated!"
Reading the second sentence did not inspire such a strong reaction. Your reaction to the third sentence was tame by comparison.
Why? Because of a phenomenon called "cognitive fluency," meaning how easily we process information. Much of our vulnerability to deception in all areas of life—including to fake news and misinformation—revolves around cognitive fluency in one way or another. And unfortunately, such misinformation can swing major elections.
The Lazy Brain
Our brains are lazy. The more effort it takes to process information, the more uncomfortable we feel about it and the more we dislike and distrust it.
By contrast, the more we like certain data and are comfortable with it, the more we feel that it's accurate. This intuitive feeling in our gut is what we use to judge what's true and false.
Yet no matter how often you heard that you should trust your gut and follow your intuition, that advice is wrong. You should not trust your gut when evaluating information where you don't have expert-level knowledge, at least when you don't want to screw up. Structured information gathering and decision-making processes help us avoid the numerous errors we make when we follow our intuition. And even experts can make serious errors when they don't rely on such decision aids.
These mistakes happen due to mental errors that scholars call "cognitive biases." The illusory truth effect is one of these mental blindspots; there are over 100 altogether. These mental blindspots impact all areas of our life, from health and politics to relationships and even shopping.
We pay the most attention to whatever we find most emotionally salient in our environment, as that's the information easiest for us to process.
The Maladapted Brain
Why do we have so many cognitive biases? It turns out that our intuitive judgments—our gut reactions, our instincts, whatever you call them—aren't adapted for the modern environment. They evolved from the ancestral savanna environment, when we lived in small tribes of 15–150 people and spent our time hunting and foraging.
It's not a surprise, when you think about it. Evolution works on time scales of many thousands of years; our modern informational environment has been around for only a couple of decades, with the rise of the internet and social media.
Unfortunately, that means we're using brains adapted for the primitive conditions of hunting and foraging to judge information and make decisions in a very different world. In the ancestral environment, we had to make quick snap judgments in order to survive, thrive, and reproduce; we're the descendants of those who did so most effectively.
In the modern environment, we can take our time to make much better judgments by using structured evaluation processes to protect yourself from cognitive biases. We have to train our minds to go against our intuitions if we want to figure out the truth and avoid falling for misinformation.
Yet it feels very counterintuitive to do so. Again, not a surprise: by definition, you have to go against your intuitions. It's not easy, but it's truly the only path if you don't want to be vulnerable to fake news.
The Danger of Cognitive Fluency and Illusory Truth
We already make plenty of mistakes by ourselves, without outside intervention. It's especially difficult to protect ourselves against those who know how to manipulate us. Unfortunately, the purveyors of misinformation excel at exploiting our cognitive biases to get us to buy into fake news.
Consider the illusory truth effect. Our vulnerability to it stems from how our brain processes novel stimuli. The first time we hear something new to us, it's difficult to process mentally. It has to integrate with our existing knowledge framework, and we have to build new neural pathways to make that happen. Doing so feels uncomfortable for our lazy brain, so the statement that we heard seems difficult to swallow to us.
The next time we hear that same thing, our mind doesn't have to build new pathways. It just has to go down the same ones it built earlier. Granted, those pathways are little more than trails, newly laid down and barely used. It's hard to travel down that newly established neural path, but much easier than when your brain had to lay down that trail. As a result, the statement is somewhat easier to swallow.
Each repetition widens and deepens the trail. Each time you hear the same thing, it feels more true, comfortable, and intuitive.
Does it work for information that seems very unlikely? Science says yes! Researchers found that the illusory truth effect applies strongly to implausible as well as plausible statements.
What about if you know better? Surely prior knowledge prevents this illusory truth! Unfortunately not: even if you know better, research shows you're still vulnerable to this cognitive bias, though less than those who don't have prior knowledge.
Sadly, people who are predisposed to more elaborate and sophisticated thinking—likely you, if you're reading the article—are more likely to fall for the illusory truth effect. And guess what: more sophisticated thinkers are also likelier than less sophisticated ones to fall for the cognitive bias known as the bias blind spot, where you ignore your own cognitive biases. So if you think that cognitive biases such as the illusory truth effect don't apply to you, you're likely deluding yourself.
That's why the purveyors of misinformation rely on repeating the same thing over and over and over and over again. They know that despite fact-checking, their repetition will sway people, even some of those who think they're invulnerable. In fact, believing that you're invulnerable will make you more likely to fall for this and other cognitive biases, since you won't be taking the steps necessary to address them.
Other Important Cognitive Biases
What are some other cognitive biases you need to beware? If you've heard of any cognitive biases, you've likely heard of the "confirmation bias." That refers to our tendency to look for and interpret information in ways that conform to our prior beliefs, intuitions, feelings, desires, and preferences, as opposed to the facts.
Again, cognitive fluency deserves blame. It's much easier to build neural pathways to information that we already possess, especially that around which we have strong emotions; it's much more difficult to break well-established neural pathways if we need to change our mind based on new information. Consequently, we instead look for information that's easy to accept, that which fits our prior beliefs. In turn, we ignore and even actively reject information that doesn't fit our beliefs.
Moreover, the more educated we are, the more likely we are to engage in such active rejection. After all, our smarts give us more ways of arguing against new information that counters our beliefs. That's why research demonstrates that the more educated you are, the more polarized your beliefs will be around scientific issues that have religious or political value overtones, such as stem cell research, human evolution, and climate change. Where might you be letting your smarts get in the way of the facts?
Our minds like to interpret the world through stories, meaning explanatory narratives that link cause and effect in a clear and simple manner. Such stories are a balm to our cognitive fluency, as our mind constantly looks for patterns that explain the world around us in an easy-to-process manner. That leads to the "narrative fallacy," where we fall for convincing-sounding narratives regardless of the facts, especially if the story fits our predispositions and our emotions.
You ever wonder why politicians tell so many stories? What about the advertisements you see on TV or video advertisements on websites, which tell very quick visual stories? How about salespeople or fundraisers? Sure, sometimes they cite statistics and scientific reports, but they spend much, much more time telling stories: simple, clear, compelling narratives that seem to make sense and tug at our heartstrings.
Now, here's something that's actually true: the world doesn't make sense. The world is not simple, clear, and compelling. The world is complex, confusing, and contradictory. Beware of simple stories! Look for complex, confusing, and contradictory scientific reports and high-quality statistics: they're much more likely to contain the truth than the easy-to-process stories.
Another big problem that comes from cognitive fluency: the "attentional bias." We pay the most attention to whatever we find most emotionally salient in our environment, as that's the information easiest for us to process. Most often, such stimuli are negative; we feel a lesser but real attentional bias to positive information.
That's why fear, anger, and resentment represent such powerful tools of misinformers. They know that people will focus on and feel more swayed by emotionally salient negative stimuli, so be suspicious of negative, emotionally laden data.
You should be especially wary of such information in the form of stories framed to fit your preconceptions and repeated. That's because cognitive biases build on top of each other. You need to learn about the most dangerous ones for evaluating reality clearly and making wise decisions, and watch out for them when you consume news, and in other life areas where you don't want to make poor choices.
Fixing Our Brains
Unfortunately, knowledge only weakly protects us from cognitive biases; it's important, but far from sufficient, as the study I cited earlier on the illusory truth effect reveals.
What can we do?
The easiest decision aid is a personal commitment to twelve truth-oriented behaviors called the Pro-Truth Pledge, which you can make by signing the pledge at ProTruthPledge.org. All of these behaviors stem from cognitive neuroscience and behavioral economics research in the field called debiasing, which refers to counterintuitive, uncomfortable, but effective strategies to protect yourself from cognitive biases.
What are these behaviors? The first four relate to you being truthful yourself, under the category "share truth." They're the most important for avoiding falling for cognitive biases when you share information:
Share truth
- Verify: fact-check information to confirm it is true before accepting and sharing it
- Balance: share the whole truth, even if some aspects do not support my opinion
- Cite: share my sources so that others can verify my information
- Clarify: distinguish between my opinion and the facts
The second set of four are about how you can best "honor truth" to protect yourself from cognitive biases in discussions with others:
Honor truth
- Acknowledge: when others share true information, even when we disagree otherwise
- Reevaluate: if my information is challenged, retract it if I cannot verify it
- Defend: defend others when they come under attack for sharing true information, even when we disagree otherwise
- Align: align my opinions and my actions with true information
The last four, under the category "encourage truth," promote broader patterns of truth-telling in our society by providing incentives for truth-telling and disincentives for deception:
Encourage truth
- Fix: ask people to retract information that reliable sources have disproved even if they are my allies
- Educate: compassionately inform those around me to stop using unreliable sources even if these sources support my opinion
- Defer: recognize the opinions of experts as more likely to be accurate when the facts are disputed
- Celebrate: those who retract incorrect statements and update their beliefs toward the truth
Peer-reviewed research has shown that taking the Pro-Truth Pledge is effective for changing people's behavior to be more truthful, both in their own statements and in interactions with others. I hope you choose to join the many thousands of ordinary citizens—and over 1,000 politicians and officials—who committed to this decision aid, as opposed to going with their gut.
[Adapted from: Dr. Gleb Tsipursky and Tim Ward, Pro Truth: A Practical Plan for Putting Truth Back Into Politics (Changemakers Books, 2020).]
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
From infections with no symptoms to why men are more likely to be hospitalized in the ICU and die of COVID-19, new research shows that your genes play a significant role
Early in the pandemic, genetic research focused on the virus because it was readily available. Plus, the virus contains only 30,000 bases in a dozen functional genes, so it's relatively easy and affordable to sequence. Additionally, the rapid mutation of the virus and its ability to escape antibody control fueled waves of different variants and provided a reason to follow viral genetics.
In comparison, there are many more genes of the human immune system and cellular functions that affect viral replication, with about 3.2 billion base pairs. Human studies require samples from large numbers of people, the analysis of each sample is vastly more complex, and sophisticated computer analysis often is required to make sense of the raw data. All of this takes time and large amounts of money, but important findings are beginning to emerge.
Asymptomatics
About half the people exposed to SARS-CoV-2, the virus that causes the COVID-19 disease, never develop symptoms of this disease, or their symptoms are so mild they often go unnoticed. One piece of understanding the phenomena came when researchers showed that exposure to OC43, a common coronavirus that results in symptoms of a cold, generates immune system T cells that also help protect against SARS-CoV-2.
Jill Hollenbach, an immunologist at the University of California at San Francisco, sought to identify the gene behind that immune protection. Most COVID-19 genetic studies are done with the most seriously ill patients because they are hospitalized and thus available. “But 99 percent of people who get it will never see the inside of a hospital for COVID-19,” she says. “They are home, they are not interacting with the health care system.”
Early in the pandemic, when most labs were shut down, she tapped into the National Bone Marrow Donor Program database. It contains detailed information on donor human leukocyte antigens (HLAs), key genes in the immune system that must match up between donor and recipient for successful transplants of marrow or organs. Each HLA can contain alleles, slight molecular differences in the DNA of the HLA, which can affect its function. Potential HLA combinations can number in the tens of thousands across the world, says Hollenbach, but each person has a smaller number of those possible variants.
She teamed up with the COVID-19 Citizen Science Study a smartphone-based study to track COVID-19 symptoms and outcomes, to ask persons in the bone marrow donor registry about COVID-19. The study enlisted more than 30,000 volunteers. Those volunteers already had their HLAs annotated by the registry, and 1,428 tested positive for the virus.
Analyzing five key HLAs, she found an allele in the gene HLA-B*15:01 that was significantly overrepresented in people who didn’t have any symptoms. The effect was even stronger if a person had inherited the allele from both parents; these persons were “more than eight times more likely to remain asymptomatic than persons who did not carry the genetic variant,” she says. Altogether this HLA was present in about 10 percent of the general European population but double that percentage in the asymptomatic group. Hollenbach and her colleagues were able confirm this in other different groups of patients.
What made the allele so potent against SARS-CoV-2? Part of the answer came from x-ray crystallography. A key element was the molecular shape of parts of the cold virus OC43 and SARS-CoV-2. They were virtually identical, and the allele could bind very tightly to them, present their molecular antigens to T cells, and generate an extremely potent T cell response to the viruses. And “for whatever reasons that generated a lot of memory T cells that are going to stick around for a long time,” says Hollenbach. “This T cell response is very early in infection and ramps up very quickly, even before the antibody response.”
Understanding the genetics of the immune response to SARS-CoV-2 is important because it provides clues into the conditions of T cells and antigens that support a response without any symptoms, she says. “It gives us an opportunity to think about whether this might be a vaccine design strategy.”
Dead men
A researcher at the Leibniz Institute of Virology in Hamburg Germany, Guelsah Gabriel, was drawn to a question at the other end of the COVID-19 spectrum: why men more likely to be hospitalized and die from the infection. It wasn't that men were any more likely to be exposed to the virus but more likely, how their immune system reacted to it
Several studies had noted that testosterone levels were significantly lower in men hospitalized with COVID-19. And, in general, the lower the testosterone, the worse the prognosis. A year after recovery, about 30 percent of men still had lower than normal levels of testosterone, a condition known as hypogonadism. Most of the men also had elevated levels of estradiol, a female hormone (https://pubmed.ncbi.nlm.nih.gov/34402750/).
Every cell has a sex, expressing receptors for male and female hormones on their surface. Hormones docking with these receptors affect the cells' internal function and the signals they send to other cells. The number and role of these receptors varies from tissue to tissue.
Gabriel began her search by examining whole exome sequences, the protein-coding part of the genome, for key enzymes involved in the metabolism of sex hormones. The research team quickly zeroed in on CYP19A1, an enzyme that converts testosterone to estradiol. The gene that produces this enzyme has a number of different alleles, the molecular variants that affect the enzyme's rate of metabolizing the sex hormones. One genetic variant, CYP19A1 (Thr201Met), is typically found in 6.2 percent of all people, both men and women, but remarkably, they found it in 68.7 percent of men who were hospitalized with COVID-19.
Lung surprise
Lungs are the tissue most affected in COVID-19 disease. Gabriel wondered if the virus might be affecting expression of their target gene in the lung so that it produces more of the enzyme that converts testosterone to estradiol. Studying cells in a petri dish, they saw no change in gene expression when they infected cells of lung tissue with influenza and the original SARS-CoV viruses that caused the SARS outbreak in 2002. But exposure to SARS-CoV-2, the virus responsible for COVID-19, increased gene expression up to 40-fold, Gabriel says.
Did the same thing happen in humans? Autopsy examination of patients in three different cites found that “CYP19A1 was abundantly expressed in the lungs of COVID-19 males but not those who died of other respiratory infections,” says Gabriel. This increased enzyme production led likely to higher levels of estradiol in the lungs of men, which “is highly inflammatory, damages the tissue, and can result in fibrosis or scarring that inhibits lung function and repair long after the virus itself has disappeared.” Somehow the virus had acquired the capacity to upregulate expression of CYP19A1.
Only two COVID-19 positive females showed increased expression of this gene. The menopause status of these women, or whether they were on hormone replacement therapy was not known. That could be important because female hormones have a protective effect for cardiovascular disease, which women often lose after going through menopause, especially if they don’t start hormone replacement therapy. That sex-specific protection might also extend to COVID-19 and merits further study.
The team was able to confirm their findings in golden hamsters, the animal model of choice for studying COVID-19. Testosterone levels in male animals dropped 5-fold three days after infection and began to recover as viral levels declined. CYP19A1 transcription increased up to 15-fold in the lungs of the male but not the females. The study authors wrote, “Virus replication in the male lungs was negatively associated with testosterone levels.”
The medical community studying COVID-19 has slowly come to recognize the importance of adipose tissue, or fat cells. They are known to express abundant levels of CYP19A1 and play a significant role as metabolic tissue in COVID-19. Gabriel adds, “One of the key findings of our study is that upon SARS-CoV-2 infection, the lung suddenly turns into a metabolic organ by highly expressing” CYP19A1.
She also found evidence that SARS-CoV-2 can infect the gonads of hamsters, thereby likely depressing circulating levels of sex hormones. The researchers did not have autopsy samples to confirm this in humans, but others have shown that the virus can replicate in those tissues.
A possible treatment
Back in the lab, substituting low and high doses of testosterone in SARS-COV-2 infected male hamsters had opposite effects depending on testosterone dosage used. Gabriel says that hormone levels can vary so much, depending on health status and age and even may change throughout the day, that “it probably is much better to inhibit the enzyme” produced by CYP19A1 than try to balance the hormones.
Results were better with letrozole, a drug approved to treat hypogonadism in males, which reduces estradiol levels. The drug also showed benefit in male hamsters in terms of less severe disease and faster recovery. She says more details need to be worked out in using letrozole to treat COVID-19, but they are talking with hospitals about clinical trials of the drug.
Gabriel has proposed a four hit explanation of how COVID-19 can be so deadly for men: the metabolic quartet. First is the genetic risk factor of CYP19A1 (Thr201Met), then comes SARS-CoV-2 infection that induces even greater expression of this gene and the deleterious increase of estradiol in the lung. Age-related hypogonadism and the heightened inflammation of obesity, known to affect CYP19A1 activity, are contributing factors in this deadly perfect storm of events.
Studying host genetics, says Gabriel, can reveal new mechanisms that yield promising avenues for further study. It’s also uniting different fields of science into a new, collaborative approach they’re calling “infection endocrinology,” she says.
New device finds breast cancer like earthquake detection
Mammograms are necessary breast cancer checks for women as they reach the recommended screening age between 40 and 50 years. Yet, many find the procedure uncomfortable. “I have large breasts, and to be able to image the full breast, the radiographer had to manipulate my breast within the machine, which took time and was quite uncomfortable,” recalls Angela, who preferred not to disclose her last name.
Breast cancer is the most widespread cancer in the world, affecting 2.3 million women in 2020. Screening exams such as mammograms can help find breast cancer early, leading to timely diagnosis and treatment. If this type of cancer is detected before the disease has spread, the 5-year survival rate is 99 percent. But some women forgo mammograms due to concerns about radiation or painful compression of breasts. Other issues, such as low income and a lack of access to healthcare, can also serve as barriers, especially for underserved populations.
Researchers at the University of Canterbury and startup Tiro Medical in Christchurch, New Zealand are hoping their new device—which doesn’t involve any radiation or compression of the breasts—could increase the accuracy of breast cancer screening, broaden access and encourage more women to get checked. They’re digging into clues from the way buildings move in an earthquake to help detect more cases of this disease.
Earthquake engineering inspires new breast cancer screening tech
What’s underneath a surface affects how it vibrates. Earthquake engineers look at the vibrations of swaying buildings to identify the underlying soil and tissue properties. “As the vibration wave travels, it reflects the stiffness of the material between that wave and the surface,” says Geoff Chase, professor of engineering at the University of Canterbury in Christchurch, New Zealand.
Chase is applying this same concept to breasts. Analyzing the surface motion of the breast as it vibrates could reveal the stiffness of the tissues underneath. Regions of high stiffness could point to cancer, given that cancerous breast tissue can be up to 20 times stiffer than normal tissue. “If in essence every woman’s breast is soft soil, then if you have some granite rocks in there, we’re going to see that on the surface,” explains Chase.
The earthquake-inspired device exceeds the 87 percent sensitivity of a 3D mammogram.
That notion underpins a new breast screening device, the brainchild of Chase. Women lie face down, with their breast being screened inside a circular hole and the nipple resting on a small disc called an actuator. The actuator moves up and down, between one and two millimeters, so there’s a small vibration, “almost like having your phone vibrate on your nipple,” says Jessica Fitzjohn, a postdoctoral fellow at the University of Canterbury who collaborated on the device design with Chase.
Cameras surrounding the device take photos of the breast surface motion as it vibrates. The photos are fed into image processing algorithms that convert them into data points. Then, diagnostic algorithms analyze those data points to find any differences in the breast tissue. “We’re looking for that stiffness contrast which could indicate a tumor,” Fitzjohn says.
A nascent yet promising technology
The device has been tested in a clinical trial of 14 women: one with healthy breasts and 13 with a tumor in one breast. The cohort was small but diverse, varying in age, breast volume and tumor size.
Results from the trial yielded a sensitivity rate, or the likelihood of correctly detecting breast cancer, of 85 percent. Meanwhile, the device’s specificity rate, or the probability of diagnosing healthy breasts, was 77 percent. By combining and optimizing certain diagnostic algorithms, the device reached between 92 and 100 percent sensitivity and between 80 and 86 percent specificity, which is comparable to the latest 3D mammogram technology. Called tomosynthesis, these 3D mammograms take a number of sharper, clearer and more detailed 3D images compared to the single 2D image of a conventional mammogram, and have a specificity score of 92 percent. Although the earthquake-inspired device’s specificity is lower, it exceeds the 87 percent sensitivity of a 3D mammogram.
The team hopes that cameras with better resolution can help improve the numbers. And with a limited amount of data in the first trial, the researchers are looking into funding for another clinical trial to validate their results on a larger cohort size.
Additionally, during the trial, the device correctly identified one woman’s breast as healthy, while her prior mammogram gave a false positive. The device correctly identified it as being healthy tissue. It was also able to capture the tiniest tumor at 7 millimeters—around a third of an inch or half as long as an aspirin tablet.
Diagnostic findings from the device are immediate.
When using the earthquake-inspired device, women lie face down, with their breast being screened inside circular holes.
University of Canterbury.
But more testing is needed to “prove the device’s ability to pick up small breast cancers less than 10 to 15 millimeters in size, as we know that finding cancers when they are small is the best way of improving outcomes,” says Richard Annand, a radiologist at Pacific Radiology in New Zealand. He explains that mammography already detects most precancerous lesions, so if the device will only be able to find large masses or lumps it won’t be particularly useful. While not directly involved in administering the clinical trial for the device, Annand was a director at the time for Canterbury Breastcare, where the trial occurred.
Meanwhile, Monique Gary, a breast surgical oncologist and medical director of the Grand View Health Cancer program in Pennsylvania, U.S., is excited to see new technologies advancing breast cancer screening and early detection. But she notes that the device may be challenging for “patients who are unable to lay prone, such as pregnant women as well as those who are differently abled, and this machine might exclude them.” She adds that it would also be interesting to explore how breast implants would impact the device’s vibrational frequency.
Diagnostic findings from the device are immediate, with the results available “before you put your clothes back on,” Chase says. The absence of any radiation is another benefit, though Annand considers it a minor edge “as we know the radiation dose used in mammography is minimal, and the advantages of having a mammogram far outweigh the potential risk of radiation.”
The researchers also conducted a separate ergonomic trial with 40 women to assess the device’s comfort, safety and ease of use. Angela was part of that trial and described the experience as “easy, quick, painless and required no manual intervention from an operator.” And if a person is uncomfortable being topless or having their breasts touched by someone else, “this type of device would make them more comfortable and less exposed,” she says.
While mammograms remain “the ‘gold standard’ in breast imaging, particularly screening, physicians need an option that can be used in combination with mammography.
Fitzjohn acknowledges that “at the moment, it’s quite a crude prototype—it’s just a block that you lie on.” The team prioritized function over form initially, but they’re now planning a few design improvements, including more cushioning for the breasts and the surface where the women lie on.
While mammograms remains “the ‘gold standard’ in breast imaging, particularly screening, physicians need an option that is good at excluding breast cancer when used in combination with mammography, has good availability, is easy to use and is affordable. There is the possibility that the device could fill this role,” Annand says.
Indeed, the researchers envision their new breast screening device as complementary to mammograms—a prescreening tool that could make breast cancer checks widely available. As the device is portable and doesn’t require specialized knowledge to operate, it can be used in clinics, pop-up screening facilities and rural communities. “If it was easily accessible, particularly as part of a checkup with a [general practitioner] or done in a practice the patient is familiar with, it may encourage more women to access this service,” Angela says. For those who find regular mammograms uncomfortable or can’t afford them, the earthquake-inspired device may be an option—and an even better one.
Broadening access could prompt more women to go for screenings, particularly younger women at higher risk of getting breast cancer because of a family history of the disease or specific gene mutations. “If we can provide an option for them then we can catch those cancers earlier,” Fitzjohn syas. “By taking screening to people, we’re increasing patient-centric care.”
With the team aiming to lower the device’s cost to somewhere between five and eight times less than mammography equipment, it would also be valuable for low-to-middle-income nations that are challenged to afford the infrastructure for mammograms or may not have enough skilled radiologists.
For Fitzjohn, the ultimate goal is to “increase equity in breast screening and catch cancer early so we have better outcomes for women who are diagnosed with breast cancer.”