Why we don’t have more COVID-19 vaccines for animals
Responding to COVID-19 outbreaks at more than 200 mink farms, the Danish government, in November 2020, culled its entire mink population. The Danish armed forces helped farmers slaughter each of their 17 million minks, which are normally farmed for their valuable fur.
The SARS-CoV-2 virus, said officials, spread from human handlers to the small, ferret-like animals, mutated, and then spread back to several hundred humans. Although the mass extermination faced much criticism, Denmark’s prime minister defended the decision last month, stating that the step was “necessary” and that the Danish government had “a responsibility for the health of the entire world.”
Over the past two and half years, COVID-19 infections have been reported in numerous animal species around the world. In addition to the Danish minks, there is other evidence that the virus can mutate as it’s transmitted back and forth between humans and animals, which increases the risk to public health. According to the World Health Organisation (WHO), COVID-19 vaccines for animals may protect the infected species and prevent the transmission of viral mutations. However, the development of such vaccines has been slow. Scientists attribute the deficiency to a lack of data.
“Several animal species have been predicted and found to be susceptible to SARS-CoV-2,” says Suresh V. Kuchipudi, interim director of the Animal Diagnostic Laboratory at the Huck Institutes of Life Sciences. But the risk remains unknown for many animals in several parts of the world, he says. “Therefore, there is an urgent need to monitor the SARS-CoV-2 exposure of high-risk animals in different parts of the world.”
In June, India introduced Ancovax, its first COVID-19 vaccine for animals. The development came a year after the nation reported that the virus had infected eight Asiatic lions, with two of them dying. While 30 COVID-19 vaccines for humans have been approved for general or emergency use across the world, Ancovax is only the third such vaccine for animals. The first, named Carnivac-Cov, was registered by Russia in March last year, followed by another vaccine four months later, developed by Zoetis, a U.S. pharmaceutical company.
Christina Lood, a Zoetis spokesperson, says the company has donated over 26,000 doses of its animal vaccine to over 200 zoos – in addition to 20 conservatories, sanctuaries and other animal organizations located in over a dozen countries, including Canada, Chile and the U.S. The vaccine, she adds, has been administered to more than 300 mammalian species so far.
“At least 75 percent of emerging infectious diseases have an animal origin, including COVID-19,” says Lood. “Now more than ever before, we can all see the important connection between animal health and human health."
The Dangers of COVID-19 Infections among Animals
Cases of the virus in animals have been reported in several countries across the world. As of March this year, 29 kinds of animals have been infected. These include pet animals like dogs, cats, ferrets and hamsters; farmed animals like minks; wild animals like the white-tailed deer, mule deer and black-tailed marmoset; and animals in zoos and sanctuaries, including hyenas, hippopotamuses and manatees. Despite the widespread infection, the U.S. Centres for Diseases Control and Prevention (CDC) has noted that “we don’t yet know all of the animals that can get infected,” adding that more studies and surveillance are needed to understand how the virus is spread between humans and animals.
Leyi Wang, a veterinary virologist at the Veterinary Diagnostic Laboratory, University of Illinois, says that captive and pet animals most often get infected by humans. It goes both ways, he says, citing a recent study in Hong Kong that found the virus spread from pet hamsters to people.
Wang’s bigger concern is the possibility that humans or domestic animals could transmit the virus back to wildlife, creating an uncontrollable reservoir of the disease, especially given the difficulty of vaccinating non-captive wild animals. Such spillbacks have happened previously with diseases such as plague, yellow-fever, and rabies.
It’s challenging and expensive to develop and implement animal vaccines, and demand has been lacking as the broader health risk for animals isn’t well known among the public. People tend to think only about their house pets.
In the past, other human respiratory viruses have proven fatal for endangered great apes like chimpanzees and gorillas. Fearing that COVID-19 could have the same effect, primatologists have been working to protect primates throughout the pandemic. Meanwhile, virus reservoirs have already been created among other animals, Wang says. “Deer of over 20 U.S. states were tested SARS-CoV-2 positive,” says Wang, pointing to a study that confirmed human-to-deer transmission as well as deer-to-deer transmission. It remains unclear how many wildlife species may be susceptible to the disease due to interaction with infected deer, says Wang.
In April, the CDC expressed concerns over new coronavirus variants mutating in wildlife, urging health authorities to monitor the spread of the contagion in animals as threats to humans. The WHO has made similar recommendations.
Challenges to Vaccine Development
Zoetis initiated development activities for its COVID-19 vaccine in February 2020 when the first known infection of a dog occurred in Hong Kong. The pharmaceutical giant completed the initial development work and studies on dogs and cats, and shared their findings at the World One Health Congress in the fall of 2020. A few months later, after a troop of eight gorillas contracted the virus at the San Diego Zoo Safari Park, Zoetis donated its experimental vaccine for emergency use in the great ape population.
Zoetis has uniquely formulated its COVID-19 vaccine for animals. It uses the same antigen as human vaccines, but it includes a different type of carrier protein for inducing a strong immune response. “The unique combination of antigen and carrier ensures safety and efficacy for the species in which a vaccine is used,” says Lood.
But it’s challenging and expensive to develop and implement animal vaccines, and demand has been lacking as the broader health risk for animals isn’t well known among the public. People tend to think only about their house pets. “As it became apparent that risk of severe disease for household pets such as cats and dogs was low, demand for those vaccines decreased before they became commercially available,” says William Karesh, executive vice-president for health and policy at EcoHealth Alliance. He adds that in affected commercial mink farms, the utility of a vaccine could justify the cost in some cases.
Although scientists have made tremendous advances in making vaccines for animals, Kuchipudi thinks that the need for COVID-19 vaccines for animals “must be evaluated based on many factors, including the susceptibility of the particular animal species, health implications, and cost.”.
Not every scientist feels the need for animal vaccines. Joel Baines, a professor of virology at Cornell University’s Baker Institute for Animal Health, says that while domestic cats are the most susceptible to COVID-19, they usually suffer mild infections. Big cats in zoos are vulnerable, but they can be isolated or distanced from humans. He says that mink farms are a relatively small industry and, by ensuring that human handlers are COVID negative, such outbreaks can be curtailed.
Baines also suggests that human vaccines could probably work in animals, as they were tested in animals during early clinical trials and induced immune responses. “However, these vaccines should be used in humans as a priority and it would be unethical to use a vaccine meant for humans to vaccinate an animal if vaccine doses are at all limiting,” he says.
William Karesh, president of the World Animal Health Organization Working Group on Wildlife Diseases, says the best way to protect animals is to reduce their exposure to infected people.
William Karesh
In the absence of enough vaccines, Karesh says that the best way to protect animals is the same as protecting unvaccinated humans - reduce their exposure to infected people by isolating them when necessary. “People working with or spending time with wild animals should follow available guidelines, which includes testing themselves and wearing PPE to avoid accidentally infecting wildlife,” he says.
The Link between Animal and Human Health
Although there is a need for animal vaccines in response to virus outbreaks, the best approach is to try to prevent the outbreaks in the first place, explains K. Srinath Reddy, president of the Public Health Foundation of India. He says that the incidence of zoonotic diseases has increased in the past six decades because human actions like increased deforestation, wildlife trade and animal meat consumption have opened an ecological window for disease transmission between humans and animals. Such actions chip away at the natural barriers between humans and forest-dwelling viruses, while building conveyor belts for the transmission of zoonotic diseases like COVID-19.
Many studies suggest that the source of COVID-19 was infected live animals sold at a wet market in China’s Wuhan. The market sold live dogs, rats, porcupines, badgers, hares, foxes, hedgehogs, marmots and Chinese muntjac (small deer) and, according to a study published in July, the virus was found on the market’s stalls, animal cages, carts and water drains.
This research strongly suggests that COVID-19 is a zoonotic disease, one that jumps from animals to humans due to our close relationship with them in agriculture, as companions and in the natural environment. Half of the infectious diseases that affect people come from animals, but the study of zoonotic diseases has been historically underfunded, even as they can reduce the likelihood and cost of future pandemics.
“We need to invest in vaccines,” says Reddy, “but that cannot be a substitute for an ecologically sensible approach to curtailing zoonotic diseases.”
Bacterial antibiotic resistance has been a concern in the medical field for several years. Now a new, similar threat is arising: drug-resistant fungal infections. The Centers for Disease Control and Prevention considers antifungal and antimicrobial resistance to be among the world’s greatest public health challenges.
One particular type of fungal infection caused by Candida auris is escalating rapidly throughout the world. And to make matters worse, C. auris is becoming increasingly resistant to current antifungal medications, which means that if you develop a C. auris infection, the drugs your doctor prescribes may not work. “We’re effectively out of medicines,” says Thomas Walsh, founding director of the Center for Innovative Therapeutics and Diagnostics, a translational research center dedicated to solving the antimicrobial resistance problem. Walsh spoke about the challenges at a Demy-Colton Virtual Salon, one in a series of interactive discussions among life science thought leaders.
Although C. auris typically doesn’t sicken healthy people, it afflicts immunocompromised hospital patients and may cause severe infections that can lead to sepsis, a life-threatening condition in which the overwhelmed immune system begins to attack the body’s own organs. Between 30 and 60 percent of patients who contract a C. auris infection die from it, according to the CDC. People who are undergoing stem cell transplants, have catheters or have taken antifungal or antibiotic medicines are at highest risk. “We’re coming to a perfect storm of increasing resistance rates, increasing numbers of immunosuppressed patients worldwide and a bug that is adapting to higher temperatures as the climate changes,” says Prabhavathi Fernandes, chair of the National BioDefense Science Board.
Most Candida species aren’t well-adapted to our body temperatures so they aren’t a threat. C. auris, however, thrives at human body temperatures.
Although medical professionals aren’t concerned at this point about C. auris evolving to affect healthy people, they worry that its presence in hospitals can turn routine surgeries into life-threatening calamities. “It’s coming,” says Fernandes. “It’s just a matter of time.”
An emerging global threat
“Fungi are found in the environment,” explains Fernandes, so Candida spores can easily wind up on people’s skin. In hospitals, they can be transferred from contact with healthcare workers or contaminated surfaces. Most Candida species aren’t well-adapted to our body temperatures so they aren’t a threat. C. auris, however, thrives at human body temperatures. It can enter the body during medical treatments that break the skin—and cause an infection. Overall, fungal infections cost some $48 billion in the U.S. each year. And infection rates are increasing because, in an ironic twist, advanced medical therapies are enabling severely ill patients to live longer and, therefore, be exposed to this pathogen.
The first-ever case of a C. auris infection was reported in Japan in 2009, although an analysis of Candida samples dated the earliest strain to a 1996 sample from South Korea. Since then, five separate varieties – called clades, which are similar to strains among bacteria – developed independently in different geographies: South Asia, East Asia, South Africa, South America and, recently, Iran. So far, C. auris infections have been reported in 35 countries.
In the U.S., the first infection was reported in 2016, and the CDC started tracking it nationally two years later. During that time, 5,654 cases have been reported to the CDC, which only tracks U.S. data.
What’s more notable than the number of cases is their rate of increase. In 2016, new cases increased by 175 percent and, on average, they have approximately doubled every year. From 2016 through 2022, the number of infections jumped from 63 to 2,377, a roughly 37-fold increase.
“This reminds me of what we saw with epidemics from 2013 through 2020… with Ebola, Zika and the COVID-19 pandemic,” says Robin Robinson, CEO of Spriovas and founding director of the Biomedical Advanced Research and Development Authority (BARDA), which is part of the U.S. Department of Health and Human Services. These epidemics started with a hockey stick trajectory, Robinson says—a gradual growth leading to a sharp spike, just like the shape of a hockey stick.
Another challenge is that right now medics don’t have rapid diagnostic tests for fungal infections. Currently, patients are often misdiagnosed because C. auris resembles several other easily treated fungi. Or they are diagnosed long after the infection begins and is harder to treat.
The problem is that existing diagnostics tests can only identify C. auris once it reaches the bloodstream. Yet, because this pathogen infects bodily tissues first, it should be possible to catch it much earlier before it becomes life-threatening. “We have to diagnose it before it reaches the bloodstream,” Walsh says.
The most alarming fact is that some Candida infections no longer respond to standard therapeutics.
“We need to focus on rapid diagnostic tests that do not rely on a positive blood culture,” says John Sperzel, president and CEO of T2 Biosystems, a company specializing in diagnostics solutions. Blood cultures typically take two to three days for the concentration of Candida to become large enough to detect. The company’s novel test detects about 90 percent of Candida species within three to five hours—thanks to its ability to spot minute quantities of the pathogen in blood samples instead of waiting for them to incubate and proliferate.
Unlike other Candida species C. auris thrives at human body temperatures
Adobe Stock
Tackling the resistance challenge
The most alarming fact is that some Candida infections no longer respond to standard therapeutics. The number of cases that stopped responding to echinocandin, the first-line therapy for most Candida infections, tripled in 2020, according to a study by the CDC.
Now, each of the first four clades shows varying levels of resistance to all three commonly prescribed classes of antifungal medications, such as azoles, echinocandins, and polyenes. For example, 97 percent of infections from C. auris Clade I are resistant to fluconazole, 54 percent to voriconazole and 30 percent of amphotericin. Nearly half are resistant to multiple antifungal drugs. Even with Clade II fungi, which has the least resistance of all the clades, 11 to 14 percent have become resistant to fluconazole.
Anti-fungal therapies typically target specific chemical compounds present on fungi’s cell membranes, but not on human cells—otherwise the medicine would cause damage to our own tissues. Fluconazole and other azole antifungals target a compound called ergosterol, preventing the fungal cells from replicating. Over the years, however, C. auris evolved to resist it, so existing fungal medications don’t work as well anymore.
A newer class of drugs called echinocandins targets a different part of the fungal cell. “The echinocandins – like caspofungin – inhibit (a part of the fungi) involved in making glucan, which is an essential component of the fungal cell wall and is not found in human cells,” Fernandes says. New antifungal treatments are needed, she adds, but there are only a few magic bullets that will hit just the fungus and not the human cells.
Research to fight infections also has been challenged by a lack of government support. That is changing now that BARDA is requesting proposals to develop novel antifungals. “The scope includes C. auris, as well as antifungals following a radiological/nuclear emergency, says BARDA spokesperson Elleen Kane.
The remaining challenge is the number of patients available to participate in clinical trials. Large numbers are needed, but the available patients are quite sick and often die before trials can be completed. Consequently, few biopharmaceutical companies are developing new treatments for C. auris.
ClinicalTrials.gov reports only two drugs in development for invasive C. auris infections—those than can spread throughout the body rather than localize in one particular area, like throat or vaginal infections: ibrexafungerp by Scynexis, Inc., fosmanogepix, by Pfizer.
Scynexis’ ibrexafungerp appears active against C. auris and other emerging, drug-resistant pathogens. The FDA recently approved it as a therapy for vaginal yeast infections and it is undergoing Phase III clinical trials against invasive candidiasis in an attempt to keep the infection from spreading.
“Ibreafungerp is structurally different from other echinocandins,” Fernandes says, because it targets a different part of the fungus. “We’re lucky it has activity against C. auris.”
Pfizer’s fosmanogepix is in Phase II clinical trials for patients with invasive fungal infections caused by multiple Candida species. Results are showing significantly better survival rates for people taking fosmanogepix.
Although C. auris does pose a serious threat to healthcare worldwide, scientists try to stay optimistic—because they recognized the problem early enough, they might have solutions in place before the perfect storm hits. “There is a bit of hope,” says Robinson. “BARDA has finally been able to fund the development of new antifungal agents and, hopefully, this year we can get several new classes of antifungals into development.”
New elevators could lift up our access to space
Story by Big Think
When people first started exploring space in the 1960s, it cost upwards of $80,000 (adjusted for inflation) to put a single pound of payload into low-Earth orbit.
A major reason for this high cost was the need to build a new, expensive rocket for every launch. That really started to change when SpaceX began making cheap, reusable rockets, and today, the company is ferrying customer payloads to LEO at a price of just $1,300 per pound.
This is making space accessible to scientists, startups, and tourists who never could have afforded it previously, but the cheapest way to reach orbit might not be a rocket at all — it could be an elevator.
The space elevator
The seeds for a space elevator were first planted by Russian scientist Konstantin Tsiolkovsky in 1895, who, after visiting the 1,000-foot (305 m) Eiffel Tower, published a paper theorizing about the construction of a structure 22,000 miles (35,400 km) high.
This would provide access to geostationary orbit, an altitude where objects appear to remain fixed above Earth’s surface, but Tsiolkovsky conceded that no material could support the weight of such a tower.
We could then send electrically powered “climber” vehicles up and down the tether to deliver payloads to any Earth orbit.
In 1959, soon after Sputnik, Russian engineer Yuri N. Artsutanov proposed a way around this issue: instead of building a space elevator from the ground up, start at the top. More specifically, he suggested placing a satellite in geostationary orbit and dropping a tether from it down to Earth’s equator. As the tether descended, the satellite would ascend. Once attached to Earth’s surface, the tether would be kept taut, thanks to a combination of gravitational and centrifugal forces.
We could then send electrically powered “climber” vehicles up and down the tether to deliver payloads to any Earth orbit. According to physicist Bradley Edwards, who researched the concept for NASA about 20 years ago, it’d cost $10 billion and take 15 years to build a space elevator, but once operational, the cost of sending a payload to any Earth orbit could be as low as $100 per pound.
“Once you reduce the cost to almost a Fed-Ex kind of level, it opens the doors to lots of people, lots of countries, and lots of companies to get involved in space,” Edwards told Space.com in 2005.
In addition to the economic advantages, a space elevator would also be cleaner than using rockets — there’d be no burning of fuel, no harmful greenhouse emissions — and the new transport system wouldn’t contribute to the problem of space junk to the same degree that expendable rockets do.
So, why don’t we have one yet?
Tether troubles
Edwards wrote in his report for NASA that all of the technology needed to build a space elevator already existed except the material needed to build the tether, which needs to be light but also strong enough to withstand all the huge forces acting upon it.
The good news, according to the report, was that the perfect material — ultra-strong, ultra-tiny “nanotubes” of carbon — would be available in just two years.
“[S]teel is not strong enough, neither is Kevlar, carbon fiber, spider silk, or any other material other than carbon nanotubes,” wrote Edwards. “Fortunately for us, carbon nanotube research is extremely hot right now, and it is progressing quickly to commercial production.”Unfortunately, he misjudged how hard it would be to synthesize carbon nanotubes — to date, no one has been able to grow one longer than 21 inches (53 cm).
Further research into the material revealed that it tends to fray under extreme stress, too, meaning even if we could manufacture carbon nanotubes at the lengths needed, they’d be at risk of snapping, not only destroying the space elevator, but threatening lives on Earth.
Looking ahead
Carbon nanotubes might have been the early frontrunner as the tether material for space elevators, but there are other options, including graphene, an essentially two-dimensional form of carbon that is already easier to scale up than nanotubes (though still not easy).
Contrary to Edwards’ report, Johns Hopkins University researchers Sean Sun and Dan Popescu say Kevlar fibers could work — we would just need to constantly repair the tether, the same way the human body constantly repairs its tendons.
“Using sensors and artificially intelligent software, it would be possible to model the whole tether mathematically so as to predict when, where, and how the fibers would break,” the researchers wrote in Aeon in 2018.
“When they did, speedy robotic climbers patrolling up and down the tether would replace them, adjusting the rate of maintenance and repair as needed — mimicking the sensitivity of biological processes,” they continued.Astronomers from the University of Cambridge and Columbia University also think Kevlar could work for a space elevator — if we built it from the moon, rather than Earth.
They call their concept the Spaceline, and the idea is that a tether attached to the moon’s surface could extend toward Earth’s geostationary orbit, held taut by the pull of our planet’s gravity. We could then use rockets to deliver payloads — and potentially people — to solar-powered climber robots positioned at the end of this 200,000+ mile long tether. The bots could then travel up the line to the moon’s surface.
This wouldn’t eliminate the need for rockets to get into Earth’s orbit, but it would be a cheaper way to get to the moon. The forces acting on a lunar space elevator wouldn’t be as strong as one extending from Earth’s surface, either, according to the researchers, opening up more options for tether materials.
“[T]he necessary strength of the material is much lower than an Earth-based elevator — and thus it could be built from fibers that are already mass-produced … and relatively affordable,” they wrote in a paper shared on the preprint server arXiv.
After riding up the Earth-based space elevator, a capsule would fly to a space station attached to the tether of the moon-based one.
Electrically powered climber capsules could go up down the tether to deliver payloads to any Earth orbit.
Adobe Stock
Some Chinese researchers, meanwhile, aren’t giving up on the idea of using carbon nanotubes for a space elevator — in 2018, a team from Tsinghua University revealed that they’d developed nanotubes that they say are strong enough for a tether.
The researchers are still working on the issue of scaling up production, but in 2021, state-owned news outlet Xinhua released a video depicting an in-development concept, called “Sky Ladder,” that would consist of space elevators above Earth and the moon.
After riding up the Earth-based space elevator, a capsule would fly to a space station attached to the tether of the moon-based one. If the project could be pulled off — a huge if — China predicts Sky Ladder could cut the cost of sending people and goods to the moon by 96 percent.
The bottom line
In the 120 years since Tsiolkovsky looked at the Eiffel Tower and thought way bigger, tremendous progress has been made developing materials with the properties needed for a space elevator. At this point, it seems likely we could one day have a material that can be manufactured at the scale needed for a tether — but by the time that happens, the need for a space elevator may have evaporated.
Several aerospace companies are making progress with their own reusable rockets, and as those join the market with SpaceX, competition could cause launch prices to fall further.
California startup SpinLaunch, meanwhile, is developing a massive centrifuge to fling payloads into space, where much smaller rockets can propel them into orbit. If the company succeeds (another one of those big ifs), it says the system would slash the amount of fuel needed to reach orbit by 70 percent.
Even if SpinLaunch doesn’t get off the ground, several groups are developing environmentally friendly rocket fuels that produce far fewer (or no) harmful emissions. More work is needed to efficiently scale up their production, but overcoming that hurdle will likely be far easier than building a 22,000-mile (35,400-km) elevator to space.