With Mentors, Models, and #MeToo, Femtech Comes of Age
In her quest to become a tech entrepreneur, Stacy Chin has been an ace at tackling thorny intellectual challenges, mastering everything from molecules to manufacturing.
These mostly female leaders of firms with products addressing women's health concerns are winning in a big way, raising about $1.1 billion in startup funds over the past few years.
But the 28-year-old founder of HydroGlyde Coatings, based in Worcester, Mass., admitted to being momentarily stumped recently when pitching her product – a new kind of self-lubricating condom – to venture capitalists.
"Being a young female scientist and going into that sexual healthcare space, it was definitely a little bit challenging to learn how to navigate during presentations and pitches when there were a lot of older males in the audience," said Chin, whose product is of special appeal to older women suffering from vaginal dryness. "I eventually figured it out, but it wasn't easy."
Chin is at the vanguard of a new generation of "femtech" entrepreneurs heading companies with names like LOLA Tampons, Prelude Fertility, and Peach, bringing once-taboo topics like menstruation, ovulation, incontinence, breastfeeding, pelvic pain and, yes, female sexual pleasure to the highest chambers of finance. These mostly female leaders of firms with products addressing women's health concerns are winning in a big way, raising about $1.1 billion in startup funds over the past few years, according to the New York data analytics firm CB Insights.
"We are definitely at a watershed moment for femtech. But we need to remember that [it's] an overnight sensation that is decades in the making."
If the question is "Why now?", the answer may be that femtech leaders are benefiting from the current conversations around respect for women in the workplace, and long-term efforts to achieve gender equality in the male-dominated tech industry.
"We are definitely at a watershed moment for femtech," said Rachel Braun Scherl, a self-described "vaginepreneur" whose new book, "Orgasmic Leadership," profiles femtech leaders. "But we need to remember that femtech is an overnight sensation that is decades in the making."
In contrast with earlier and perhaps less successful generations of women in tech, these pioneers can point to mentors who are readily accessible, as well as more female VC and corporate heads they can directly address when making pitches. There's also a changing cultural landscape where sexual harassment is in the news and women who talk openly about sex in a business context can be taken seriously.
"Change is definitely in the air," said Kevin O'Sullivan, the president and CEO of Massachusetts Biomedical Initiatives, who sponsored Chin and has helped launch more than a hundred biotech companies in his home state since the 1980s.
Like a pinprick bursting a balloon, the #MeToo social movement and its focus on the prevalence of sexual harassment and assault is a factor in the success of femtech, some experts believe, provoking heightened awareness about the role of women in society -- including equal access to start-up capital.
"If such a difficult topic is being discussed in the open, that means more and more people are speaking out and are no longer afraid about sharing their own concerns," said Debbie Hart, president and CEO of BioNJ, a business trade group she founded in 1994. "That's empowering the whole women's movement."
The power of programs that allow young women to witness successful older women in leadership cannot be overstated.
Observers like Hart say that femtech's advent is also due to a payoff from longer-term investments in a slew of programs encouraging girls to pursue STEM careers and women to be hired as leaders, as well as changing social norms to allow female health to be part of the public discourse.
The power of programs that allow young women to witness successful older women in leadership cannot be overstated, according to Susan Scherreik of the Stillman School of Business at Seton Hall University in New Jersey.
"What I have found in entrepreneurship is that it's all about two things: role models and mentoring," said Scherreik, director of the university's Center for Entrepreneurial Studies.
One of Scherreik's top students, Madison Schott, is convinced that the availability of female mentors has been instrumental to her success and will remain so in her future. "It definitely is very encouraging," said Schott, who won the "Pirates Pitch" university-wide business start-up competition in April for an app she is developing that uses AI to guide readers to reliable news sources. "Woman to woman," she added, "you can be more open when you have questions or problems."
Programs that showcase successful females in leadership positions are beginning to bear fruit, inspiring a new generation of females in business, according to Susan Scherreik (at left), director of Seton Hall University's Center for Entrepreneurial Studies at the Stillman School of Business. Her student, Madison Schott (right), is the winner of a university-wide business start-up competition for an app she is developing.
While femtech entrepreneurs may be the beneficiaries of change, they also may be its agents. Scherl, the author, who has been working in the female healthcare sector for more than a decade, believes in persistence. In 2010, organizers of a major awards show banned a product she was marketing, Zestra Essential Arousal Oils*, from a gift bag for honorees. Two years ago, however, times changed and femtech prevailed. The company making goodie bags for Academy Awards nominees included another one of her products, Nuelle's Fiera, a $250 vibrator.
"We come from so many different perspectives when it comes to sex, whether it is cultural, religious, age-related, or even from a trauma, so we never have created a common language," Scherl said. "But we in femtech are making huge progress. We are not only selling products now, we are selling conversation, and we are selling a comfort with sexuality in all its complex forms."
[*Correction: Due to a reporting error, the product that was banned in 2010 was initially identified as Nuelle's Fiera, not Zestra Essential Arousal Oils. The article has been updated for accuracy. --Editor]
Scientists experiment with burning iron as a fuel source
Story by Freethink
Try burning an iron metal ingot and you’ll have to wait a long time — but grind it into a powder and it will readily burst into flames. That’s how sparklers work: metal dust burning in a beautiful display of light and heat. But could we burn iron for more than fun? Could this simple material become a cheap, clean, carbon-free fuel?
In new experiments — conducted on rockets, in microgravity — Canadian and Dutch researchers are looking at ways of boosting the efficiency of burning iron, with a view to turning this abundant material — the fourth most common in the Earth’s crust, about about 5% of its mass — into an alternative energy source.
Iron as a fuel
Iron is abundantly available and cheap. More importantly, the byproduct of burning iron is rust (iron oxide), a solid material that is easy to collect and recycle. Neither burning iron nor converting its oxide back produces any carbon in the process.
Iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again.
Iron has a high energy density: it requires almost the same volume as gasoline to produce the same amount of energy. However, iron has poor specific energy: it’s a lot heavier than gas to produce the same amount of energy. (Think of picking up a jug of gasoline, and then imagine trying to pick up a similar sized chunk of iron.) Therefore, its weight is prohibitive for many applications. Burning iron to run a car isn’t very practical if the iron fuel weighs as much as the car itself.
In its powdered form, however, iron offers more promise as a high-density energy carrier or storage system. Iron-burning furnaces could provide direct heat for industry, home heating, or to generate electricity.
Plus, iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again (as long as you’ve got a source of clean electricity or green hydrogen). When there’s excess electricity available from renewables like solar and wind, for example, rust could be converted back into iron powder, and then burned on demand to release that energy again.
However, these methods of recycling rust are very energy intensive and inefficient, currently, so improvements to the efficiency of burning iron itself may be crucial to making such a circular system viable.
The science of discrete burning
Powdered particles have a high surface area to volume ratio, which means it is easier to ignite them. This is true for metals as well.
Under the right circumstances, powdered iron can burn in a manner known as discrete burning. In its most ideal form, the flame completely consumes one particle before the heat radiating from it combusts other particles in its vicinity. By studying this process, researchers can better understand and model how iron combusts, allowing them to design better iron-burning furnaces.
Discrete burning is difficult to achieve on Earth. Perfect discrete burning requires a specific particle density and oxygen concentration. When the particles are too close and compacted, the fire jumps to neighboring particles before fully consuming a particle, resulting in a more chaotic and less controlled burn.
Presently, the rate at which powdered iron particles burn or how they release heat in different conditions is poorly understood. This hinders the development of technologies to efficiently utilize iron as a large-scale fuel.
Burning metal in microgravity
In April, the European Space Agency (ESA) launched a suborbital “sounding” rocket, carrying three experimental setups. As the rocket traced its parabolic trajectory through the atmosphere, the experiments got a few minutes in free fall, simulating microgravity.
One of the experiments on this mission studied how iron powder burns in the absence of gravity.
In microgravity, particles float in a more uniformly distributed cloud. This allows researchers to model the flow of iron particles and how a flame propagates through a cloud of iron particles in different oxygen concentrations.
Existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
Insights into how flames propagate through iron powder under different conditions could help design much more efficient iron-burning furnaces.
Clean and carbon-free energy on Earth
Various businesses are looking at ways to incorporate iron fuels into their processes. In particular, it could serve as a cleaner way to supply industrial heat by burning iron to heat water.
For example, Dutch brewery Swinkels Family Brewers, in collaboration with the Eindhoven University of Technology, switched to iron fuel as the heat source to power its brewing process, accounting for 15 million glasses of beer annually. Dutch startup RIFT is running proof-of-concept iron fuel power plants in Helmond and Arnhem.
As researchers continue to improve the efficiency of burning iron, its applicability will extend to other use cases as well. But is the infrastructure in place for this transition?
Often, the transition to new energy sources is slowed by the need to create new infrastructure to utilize them. Fortunately, this isn’t the case with switching from fossil fuels to iron. Since the ideal temperature to burn iron is similar to that for hydrocarbons, existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
This article originally appeared on Freethink, home of the brightest minds and biggest ideas of all time.
How to Use Thoughts to Control Computers with Dr. Tom Oxley
Tom Oxley is building what he calls a “natural highway into the brain” that lets people use their minds to control their phones and computers. The device, called the Stentrode, could improve the lives of hundreds of thousands of people living with spinal cord paralysis, ALS and other neurodegenerative diseases.
Leaps.org talked with Dr. Oxley for today’s podcast. A fascinating thing about the Stentrode is that it works very differently from other “brain computer interfaces” you may be familiar with, like Elon Musk’s Neuralink. Some BCIs are implanted by surgeons directly into a person’s brain, but the Stentrode is much less invasive. Dr. Oxley’s company, Synchron, opts for a “natural” approach, using stents in blood vessels to access the brain. This offers some major advantages to the handful of people who’ve already started to use the Stentrode.
The audio improves about 10 minutes into the episode. (There was a minor headset issue early on, but everything is audible throughout.) Dr. Oxley’s work creates game-changing opportunities for patients desperate for new options. His take on where we're headed with BCIs is must listening for anyone who cares about the future of health and technology.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
In our conversation, Dr. Oxley talks about “Bluetooth brain”; the critical role of AI in the present and future of BCIs; how BCIs compare to voice command technology; regulatory frameworks for revolutionary technologies; specific people with paralysis who’ve been able to regain some independence thanks to the Stentrode; what it means to be a neurointerventionist; how to scale BCIs for more people to use them; the risks of BCIs malfunctioning; organic implants; and how BCIs help us understand the brain, among other topics.
Dr. Oxley received his PhD in neuro engineering from the University of Melbourne in Australia. He is the founding CEO of Synchron and an associate professor and the head of the vascular bionics laboratory at the University of Melbourne. He’s also a clinical instructor in the Deepartment of Neurosurgery at Mount Sinai Hospital. Dr. Oxley has completed more than 1,600 endovascular neurosurgical procedures on patients, including people with aneurysms and strokes, and has authored over 100 peer reviewed articles.
Links:
Synchron website - https://synchron.com/
Assessment of Safety of a Fully Implanted Endovascular Brain-Computer Interface for Severe Paralysis in 4 Patients (paper co-authored by Tom Oxley) - https://jamanetwork.com/journals/jamaneurology/art...
More research related to Synchron's work - https://synchron.com/research
Tom Oxley on LinkedIn - https://www.linkedin.com/in/tomoxl
Tom Oxley on Twitter - https://twitter.com/tomoxl?lang=en
Tom Oxley TED - https://www.ted.com/talks/tom_oxley_a_brain_implant_that_turns_your_thoughts_into_text?language=en
Tom Oxley website - https://tomoxl.com/
Novel brain implant helps paralyzed woman speak using digital avatar - https://engineering.berkeley.edu/news/2023/08/novel-brain-implant-helps-paralyzed-woman-speak-using-a-digital-avatar/
Edward Chang lab - https://changlab.ucsf.edu/
BCIs convert brain activity into text at 62 words per minute - https://med.stanford.edu/neurosurgery/news/2023/he...
Leaps.org: The Mind-Blowing Promise of Neural Implants - https://leaps.org/the-mind-blowing-promise-of-neural-implants/
Tom Oxley