Would You Want to Know a Decade Early If You Were Getting Alzheimer's?
Editor's Note: A team of researchers in Italy recently used artificial intelligence and machine learning to diagnose Alzheimer's disease on a brain scan an entire decade before symptoms show up in the patient. While some people argue that early detection is critical, others believe the knowledge would do more harm than good. LeapsMag invited contributors with opposite opinions to share their perspectives.
I first realized something was wrong with my dad when I came home for Thanksgiving 20 years ago.
I hadn't seen my family for more than a year after moving from New York to California. My father was meticulous, a multi-shower a day man, a regular Beau Brummell. He was never officially diagnosed with dementia, but it was easy to figure out after he stopped leaving the house, stopped reading, stopped being himself. My mother knew, but she never sought help. After his illness showed itself, I asked her if she considered a nursing home. "Never," she told me. "I can take care of him." And she did.
She gave herself a break once to visit me, and it was the first time she traveled separately from him since they eloped at seventeen. My brother watched my father, and it was not smooth. Dad was angry, hallucinating, and demanding his gun, which had been disposed of long ago. While Mom was visiting me in California, we played some board games. One demanded honest answers. The card read, What are you most afraid of? "Dementia," she said.
My father never saw this coming, none of us did.
Dementia ran on my mother's side. Her mother, my Nana, was senile, the popular diagnosis for older folks back then. My grandfather tried his hardest to take care of her, but she kept escaping their tidy 6th floor apartment to run away. My mother would go over every day to take care of them, but once my grandfather became ill, she took her mother into our apartment. She had two small children, Nana, and her husband in a two-bedroom flat. Nana talked to people under plates, wore tissues on her head, and tried to escape. We were on the first floor, so she could run into traffic if all eyes weren't on her. Soon, it was too much, even for my Wonder Woman mom. Nana was placed in a nursing home and died soon after.
My mother dropped dead on a NYC sidewalk two years after my father started to deteriorate. She was probably going to the store to buy milk and cigarettes. A kind stranger called 911, and a cop came to my parent's door soon after to tell my dad the news. My father cried for death, raged and ranted, then calmed down enough to come back as the dad we remembered for the week of mourning. He even ordered a Manhattan at dinner. His death came exactly a week and an hour after my mother's. He died of a broken heart. My husband cried with all his body after we left the cemetery, weeping, "Poor Buck. Poor Buck." I never saw him cry before.
Now, 18 years later, I sit here with my husband, 59 years old, as he suffers from the same hideous disease.
He is talking to someone I can't see, even laughing with him. He holds a Ph.D. in literature, taught college, had a single handicap golf game, and ate well. We never saw this coming. One day he went to type and jumbled letters came on the screen. He would show up late or early for his classes, wondering what was wrong with the students. He started running red lights. He was graciously counseled to retire, and he did, at 55. His doctor told him it was depression. The second opinion agreed. He was told to do nothing for a year, and he did. He played golf a bit, then one day he couldn't speak or think clearly. I came home from work to find him roaming the neighborhood, eyes ablaze, muttering to himself. I went on family leave. Many tests later we got the working diagnosis, but it meant nothing to him. He never reacted to the words Primary Progressive Aphasia or dementia. I was glad. If he was lucid, I knew what he would talk about doing. He told me after my dad's death that he did not want that life for himself.
I worry I may get it, too. It almost seems inescapable. Dementia has no cure, and the treatments for the symptoms are hit and miss. I thought about getting the full flight of predictive tests, but I know myself, and I scare myself into bracing for the worst. Others scare me, too, when I read their online statements about ending their lives if they learn they have it: I told my children to take me to a state where assisted suicide is legal; it's easy to overdose; I don't want to be a burden on my children. These are caregivers on social media forums. They live with the terror, eyes wide open. We have no children, but who would I burden? My sisters? My brother? Do I stay or do I go? This disease invites pandemonium. Assisted murder-suicides with caregiver spouses of those with dementia don't merit headlines, but their stories are on the sidebars. No thanks. I work on God's timeline.
There are no survivors – yet.
A diagnosis today would paralyze me and create melancholy for all who know me. I would second guess everything, I would read everything, I would cry, I would hardly live. I would be tempted to pick up that first drink after 20 plus years sober. I would even think about ending my life. It would be difficult not to consider. As a high school English teacher, I talk about suicide when I teach Hamlet. I tell the students suicide is a permanent solution to a temporary problem. Dementia isn't temporary. There are no survivors – yet.
I often think what my relatives would have done with an advance diagnosis. My grandmother was a classic worrier. She would have been beyond distraught. My father might have found that gun. My husband would have taken the right number of pills.
An advance diagnosis would paralyze me.
I appreciate the arguments for early diagnosis. Some people are made of sterner stuff. They have the mindset I lack. I admire so many who are contributing to the current conversation about dementia and are active advocates for a cure. They have found a purpose in their fate.
I don't need a test to get my ducks in a row. Loving those with dementia has prompted me to be prepared. I have a different type of bucket list: reset my priorities, slow down, be present, educate others, and make my legal plans. If and when it happens, there will be time for toast and tea and a walk along the shore. There will be time to plan for the inevitable and unenviable end. I am morbid enough to know I will recognize the purple elephant in the room. I don't want the shock and awe now. I can wait. My sisters agree. We will keep our elbows out.
Editor's Note: Consider the other side of the argument here.
Catching colds may help protect kids from Covid
A common cold virus causes the immune system to produce T cells that also provide protection against SARS-CoV-2, according to new research. The study, published last month in PNAS, shows that this effect is most pronounced in young children. The finding may help explain why most young people who have been exposed to the cold-causing coronavirus have not developed serious cases of COVID-19.
One curiosity stood out in the early days of the COVID-19 pandemic – why were so few kids getting sick. Generally young children and the elderly are the most vulnerable to disease outbreaks, particularly viral infections, either because their immune systems are not fully developed or they are starting to fail.
But solid information on the new infection was so scarce that many public health officials acted on the precautionary principle, assumed a worst-case scenario, and applied the broadest, most restrictive policies to all people to try to contain the coronavirus SARS-CoV-2.
One early thought was that lockdowns worked and kids (ages 6 months to 17 years) simply were not being exposed to the virus. So it was a shock when data started to come in showing that well over half of them carried antibodies to the virus, indicating exposure without getting sick. That trend grew over time and the latest tracking data from the CDC shows that 96.3 percent of kids in the U.S. now carry those antibodies.
Antibodies are relatively quick and easy to measure, but some scientists are exploring whether the reactions of T cells could serve as a more useful measure of immune protection.
But that couldn't be the whole story because antibody protection fades, sometimes as early as a month after exposure and usually within a year. Additionally, SARS-CoV-2 has been spewing out waves of different variants that were more resistant to antibodies generated by their predecessors. The resistance was so significant that over time the FDA withdrew its emergency use authorization for a handful of monoclonal antibodies with earlier approval to treat the infection because they no longer worked.
Antibodies got most of the attention early on because they are part of the first line response of the immune system. Antibodies can bind to viruses and neutralize them, preventing infection. They are relatively quick and easy to measure and even manufacture, but as SARS-CoV-2 showed us, often viruses can quickly evolve to become more resistant to them. Some scientists are exploring whether the reactions of T cells could serve as a more useful measure of immune protection.
Kids, colds and T cells
T cells are part of the immune system that deals with cells once they have become infected. But working with T cells is much more difficult, takes longer, and is more expensive than working with antibodies. So studies often lags behind on this part of the immune system.
A group of researchers led by Annika Karlsson at the Karolinska Institute in Sweden focuses on T cells targeting virus-infected cells and, unsurprisingly, saw that they can play a role in SARS-CoV-2 infection. Other labs have shown that vaccination and natural exposure to the virus generates different patterns of T cell responses.
The Swedes also looked at another member of the coronavirus family, OC43, which circulates widely and is one of several causes of the common cold. The molecular structure of OC43 is similar to its more deadly cousin SARS-CoV-2. Sometimes a T cell response to one virus can produce a cross-reactive response to a similar protein structure in another virus, meaning that T cells will identify and respond to the two viruses in much the same way. Karlsson looked to see if T cells for OC43 from a wide age range of patients were cross-reactive to SARS-CoV-2.
And that is what they found, as reported in the PNAS study last month; there was cross-reactive activity, but it depended on a person’s age. A subset of a certain type of T cells, called mCD4+,, that recognized various protein parts of the cold-causing virus, OC43, expressed on the surface of an infected cell – also recognized those same protein parts from SARS-CoV-2. The T cell response was lower than that generated by natural exposure to SARS-CoV-2, but it was functional and thus could help limit the severity of COVID-19.
“One of the most politicized aspects of our pandemic response was not accepting that children are so much less at risk for severe disease with COVID-19,” because usually young children are among the most vulnerable to pathogens, says Monica Gandhi, professor of medicine at the University of California San Francisco.
“The cross-reactivity peaked at age six when more than half the people tested have a cross-reactive immune response,” says Karlsson, though their sample is too small to say if this finding applies more broadly across the population. The vast majority of children as young as two years had OC43-specific mCD4+ T cell responses. In adulthood, the functionality of both the OC43-specific and the cross-reactive T cells wane significantly, especially with advanced age.
“Considering that the mortality rate in children is the lowest from ages five to nine, and higher in younger children, our results imply that cross-reactive mCD4+ T cells may have a role in the control of SARS-CoV-2 infection in children,” the authors wrote in their paper.
“One of the most politicized aspects of our pandemic response was not accepting that children are so much less at risk for severe disease with COVID-19,” because usually young children are among the most vulnerable to pathogens, says Monica Gandhi, professor of medicine at the University of California San Francisco and author of the book, Endemic: A Post-Pandemic Playbook, to be released by the Mayo Clinic Press this summer. The immune response of kids to SARS-CoV-2 stood our expectations on their head. “We just haven't seen this before, so knowing the mechanism of protection is really important.”
Why the T cell immune response can fade with age is largely unknown. With some viruses such as measles, a single vaccination or infection generates life-long protection. But respiratory tract infections, like SARS-CoV-2, cause a localized infection - specific to certain organs - and that response tends to be shorter lived than systemic infections that affect the entire body. Karlsson suspects the elderly might be exposed to these localized types of viruses less often. Also, frequent continued exposure to a virus that results in reactivation of the memory T cell pool might eventually result in “a kind of immunosenescence or immune exhaustion that is associated with aging,” Karlsson says. https://leaps.org/scientists-just-started-testing-a-new-class-of-drugs-to-slow-and-even-reverse-aging/particle-3 This fading protection is why older people need to be repeatedly vaccinated against SARS-CoV-2.
Policy implications
Following the numbers on COVID-19 infections and severity over the last three years have shown us that healthy young people without risk factors are not likely to develop serious disease. This latest study points to a mechanism that helps explain why. But the inertia of existing policies remains. How should we adjust policy recommendations based on what we know today?
The World Health Organization (WHO) updated their COVID-19 vaccination guidance on March 28. It calls for a focus on vaccinating and boosting those at risk for developing serious disease. The guidance basically shrugged its shoulders when it came to healthy children and young adults receiving vaccinations and boosters against COVID-19. It said the priority should be to administer the “traditional essential vaccines for children,” such as those that protect against measles, rubella, and mumps.
“As an immunologist and a mother, I think that catching a cold or two when you are a kid and otherwise healthy is not that bad for you. Children have a much lower risk of becoming severely ill with SARS-CoV-2,” says Karlsson. She has followed public health guidance in Sweden, which means that her young children have not been vaccinated, but being older, she has received the vaccine and boosters. Gandhi and her children have been vaccinated, but they do not plan on additional boosters.
The WHO got it right in “concentrating on what matters,” which is getting traditional childhood immunizations back on track after their dramatic decline over the last three years, says Gandhi. Nor is there a need for masking in schools, according to a study from the Catalonia region of Spain. It found “no difference in masking and spread in schools,” particularly since tracking data indicate that nearly all young people have been exposed to SARS-CoV-2.
Both researchers lament that public discussion has overemphasized the quickly fading antibody part of the immune response to SARS-CoV-2 compared with the more durable T cell component. They say developing an efficient measure of T cell response for doctors to use in the clinic would help to monitor immunity in people at risk for severe cases of COVID-19 compared with the current method of toting up potential risk factors.
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on new scientific theories and progress to give you a therapeutic dose of inspiration headed into the weekend.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the stories covered this week:
- The eyes are the windows to the soul - and biological aging?
- What bean genes mean for health and the planet
- This breathing practice could lower levels of tau proteins
- AI beats humans at assessing heart health
- Should you get a nature prescription?