Your Genetic Data Is The New Oil. These Startups Will Pay to Rent It.
Perhaps you're one of the 12 million people who has spit into a tube in recent years to learn the secrets in your genetic code, like your ancestry, your health risks, or your carrier status for certain diseases. If you haven't participated in direct-to-consumer genetic testing, you may know someone who has.
It's for people who want more control over their genetic data--plus a share of the proceeds when and if that data is used.
Mountains of genomic data have been piling up steeply over the last several years, but according to some experts, not enough research and drug discovery is being done with the data collected, and customers rarely have a say in how their data is used. Now, a slew of ambitious startup companies are bringing together the best of blockchain technology and human genomics to help solve these problems.
But First, Why Is Your Genome So Valuable?
Access to genetic information is an obvious boon to scientific and medical progress. In the right hands, it has the potential to save lives and reduce suffering — by facilitating the development of better, safer, more targeted treatments and by shedding light on the role of genetics in countless diseases and medical conditions.
Research requiring access to direct-to-consumer (DTC) genomic data is already well underway. For example, 23andMe, the popular California-based DTC genetic testing company, has published 107 research articles so far, as of this May, using data from their five million-plus customers around the world. Their website states that, on average, of the 80 percent of their customers who have opted to share their genomic data for research purposes, each "individual contributes to 200 different research studies."
And this July, a new collaboration was announced between 23andMe and GlaxoSmithKline, the London-based pharmaceutical company. GlaxoSmithKline will be using data from 23andMe customers to develop new medical treatments, while 23andMe will receive $300 million from the four-year deal. Both companies are poised to profit significantly from their union.
Should 23andMe's customers share in the gains? Peter Pitts, president of the Center for Medicine in the Public Interest, believes they should. "Are they going to offer rebates to people who opt in, so their customers aren't paying for the privilege of 23andMe working with a for-profit company in a for-profit research project?" Pitts told NBC. So far, 23andMe has not announced any plans to share profits with their customers.
But outside of such major partnerships, many researchers are frustrated by the missed opportunities to dig deeper into the correlations between genetics and disease. That's because people's de-identified genomic information is "essentially lying fallow," siloed behind significant security blockades in the interest of preserving their anonymity. So how can both researchers and consumers come out ahead?
Putting Consumers Back in Control
For people who want more control over their genetic data -- plus a share of the proceeds when and if that data is used -- a few companies have paired consumer genomics with blockchain technology to form a new field called "blockchain genomics." Blockchain is a data storage technology that relies on a network of computers, or peer-to-peer setup, making it incredibly difficult to hack. "It's a closed loop of transactions that gets protected and encrypted, and it cannot be changed," says Tanya Woods, a blockchain thought leader and founder of Kind Village, a social impact technology platform.
The vision is to incentivize consumers to share their genomic data and empower researchers to make new breakthroughs.
"So if I agree to give you something and you agree to accept it, we make that exchange, and then that basic framework is captured in a block. … Anything that can be exchanged can be ledgered on blockchain. Anything. It could be real estate, it could be the transfer of artwork, it could be the purchase of a song or any digital content, it could be recognition of a certification," and so on.
The blockchain genomics companies' vision is to incentivize consumers to share their genomic data and empower researchers to make new breakthroughs, all while keeping the data secure and the identities of consumers anonymous.
Consumers, or "partners" as these companies call them, will have a direct say regarding which individuals or organizations can "rent" their data, and will be able to negotiate the amount they receive in exchange. But instead of fiat currency (aka "regular money") as payment, partners will either be remunerated in cryptocurrency unique to the specific company or they will be provided with individual shares of ownership in the database for contributing DNA data and other medical information.
Luna DNA, one of the blockchain genomics companies, "will allow any credible researcher or non-profit to access the databases for a nominal fee," says its president and co-founder, Dawn Barry. Luna DNA's infrastructure was designed to embrace certain conceptions of privacy and privacy law "in which individuals are in total control of their data, including the ability to have their data be 'forgotten' at any time," she said. This is nearly impossible to implement in pre-existing systems that were not designed with full control by the individual in mind.
One of the legal instruments to which Barry referred was the European Union's General Data Protection Regulation, which "states that the data collected on an individual is owned and should be controlled by that individual," she explained. Another is the California Privacy Act that echoes similar principles. "There is a global trend towards more control by the individual that has very deep implications to companies and sites that collect and aggregate data."
David Koepsell, CEO and co-founder of EncrypGen, told Forbes that "Most people are not aware that your DNA contains information about your life expectancy, your proclivity to depression or schizophrenia, your complete ethnic ancestry, your expected intelligence, maybe even your political inclinations" — information that could be misused by insurance companies and employers. And though DTC customers have been assured that their data will stay anonymous, some data can be linked back to consumers' identities. Blockchain may be the answer to these concerns.
Both blockchain technology and the DTC genetic testing arena have a glaring diversity problem.
"The security that's provided by blockchain is tremendous," Woods says. "It's a significant improvement … and as we move toward more digitized economies around the world, these kinds of solutions that are providing security, validity, trust — they're very important."
In the case of blockchain genomics companies like EncrypGen, Luna DNA, Longenesis, and Zenome, each partner who joins would bring a digital copy of their genetic readout from DTC testing companies (like 23andMe or AncestryDNA). The blockchain technology would then be used to record how and for what purposes researchers interact with it. (To learn more about blockchain, check out this helpful visual guide by Reuters.)
Obstacles in the Path to Success
The cryptocurrency approach as a method of payment could be an unattractive lure to consumers if only a limited number of people make transactions in a given currency's network. And the decade-old technology underlying it -- blockchain -- is not yet widely supported, or even well-understood, by the public at large.
"People conflate blockchain with cryptocurrency and bitcoin and all of the concerns and uncertainty thereof," Barry told us. "One can think of cryptocurrency as a single expression of the vast possibilities of the blockchain technology. Blockchain is straightforward in concept and arcane in its implementation."
But blockchain, with its Gini coefficient of 0.98, is one of the most unequal "playing fields" around. The Gini coefficient is a measure of economic inequality, where 0 represents perfect equality and 1 represents perfect inequality. Around 90 percent of bitcoin users, for example, are male, white or Asian, between the ages of 18 and 34, straight, and from middle and upper class families.
The DTC genetic testing arena, too, has a glaring diversity problem. Most DTC genetic test consumers, just like most genetic study participants, are of European descent. In the case of genetic studies, this disparity is largely explained by the fact that most research is done in Europe and North America. In addition to being over 85 percent white, individuals who purchase DTC genetic testing kits are highly educated (about half have more than a college degree), well off (43 percent have a household income of $100,000 or more per year), and are politically liberal (almost 65 percent). Only 14.5 percent of DTC genetic test consumers are non-white, and a mere 5 percent are Hispanic.
Since risk of genetic diseases often varies greatly between ethnic groups, results from DTC tests can be less accurate and less specific for those of non-European ancestry — simply due to a lack of diverse data. The bigger the genetic database, wrote Sarah Zhang for The Atlantic, the more insights 23andMe and other DTC companies "can glean from DNA. That, in turn, means the more [they] can tell customers about their ancestry and health…" Though efforts at recruiting non-white participants have been ongoing, and some successes have been made at improving ancestry tools for people of color, the benefits of genomic gathering in North America are still largely reaped by Caucasians.
So far, it's not yet clear who or how many people will choose to partake in the offerings of blockchain genomics companies.
So one chief hurdle for the blockchain genomics companies is getting the technology into the hands of those who are under-represented in both blockchain and genetic testing research. Women, in particular, may be difficult to bring on board the blockchain genomics bandwagon — though not from lack of interest. Although women make up a significant portion of DTC genetic testing customers (between 50 and 60 percent), their presence is lacking in blockchain and the biotech industry in general.
At the North American Bitcoin Conference in Miami earlier this year, only three women were on stage, compared to 84 men. And the after-party was held in a strip club.
"I was at that conference," Woods told us. "I don't know what happened at the strip club, I didn't observe it. That's not to say it didn't happen … but I enjoyed being at the conference and I enjoyed learning from people who are experimenting in the space and developing in it. Generally, would I have loved to see more women visible? Of course. In tech generally I want to see more women visible, but there's a whole ecosystem shifting that has to happen to make that possible."
Luna's goal is to achieve equal access to a technology (blockchain genomics) that could potentially improve health and quality of life for all involved. But in the merging of two fields that have been unequal since their inception, achieving equal access is one tall order indeed. So far, it's not yet clear who or how many people will choose to participate. LunaDNA's platform has not yet launched; EncrypGen released their beta version just last month.
Sharon Terry, president and CEO of Genetic Alliance — a nonprofit organization that advocates for access to quality genetic services — recently shared a message that reflects the zeitgeist for all those entering the blockchain genomics space: "Be authentic. Tell the truth, even about motives and profits. Be transparent. Engage us. Don't leave us out. Make this real collaboration. Be bold. Take risks. People are dying. It's time to march forward and make a difference."
Nobel Prize goes to technology for mRNA vaccines
When Drew Weissman received a call from Katalin Karikó in the early morning hours this past Monday, he assumed his longtime research partner was calling to share a nascent, nagging idea. Weissman, a professor of medicine at the Perelman School of Medicine at the University of Pennsylvania, and Karikó, a professor at Szeged University and an adjunct professor at UPenn, both struggle with sleep disturbances. Thus, middle-of-the-night discourses between the two, often over email, has been a staple of their friendship. But this time, Karikó had something more pressing and exciting to share: They had won the 2023 Nobel Prize in Physiology or Medicine.
The work for which they garnered the illustrious award and its accompanying $1,000,000 cash windfall was completed about two decades ago, wrought through long hours in the lab over many arduous years. But humanity collectively benefited from its life-saving outcome three years ago, when both Moderna and Pfizer/BioNTech’s mRNA vaccines against COVID were found to be safe and highly effective at preventing severe disease. Billions of doses have since been given out to protect humans from the upstart viral scourge.
“I thought of going somewhere else, or doing something else,” said Katalin Karikó. “I also thought maybe I’m not good enough, not smart enough. I tried to imagine: Everything is here, and I just have to do better experiments.”
Unlocking the power of mRNA
Weissman and Karikó unlocked mRNA vaccines for the world back in the early 2000s when they made a key breakthrough. Messenger RNA molecules are essentially instructions for cells’ ribosomes to make specific proteins, so in the 1980s and 1990s, researchers started wondering if sneaking mRNA into the body could trigger cells to manufacture antibodies, enzymes, or growth agents for protecting against infection, treating disease, or repairing tissues. But there was a big problem: injecting this synthetic mRNA triggered a dangerous, inflammatory immune response resulting in the mRNA’s destruction.
While most other researchers chose not to tackle this perplexing problem to instead pursue more lucrative and publishable exploits, Karikó stuck with it. The choice sent her academic career into depressing doldrums. Nobody would fund her work, publications dried up, and after six years as an assistant professor at the University of Pennsylvania, Karikó got demoted. She was going backward.
“I thought of going somewhere else, or doing something else,” Karikó told Stat in 2020. “I also thought maybe I’m not good enough, not smart enough. I tried to imagine: Everything is here, and I just have to do better experiments.”
A tale of tenacity
Collaborating with Drew Weissman, a new professor at the University of Pennsylvania, in the late 1990s helped provide Karikó with the tenacity to continue. Weissman nurtured a goal of developing a vaccine against HIV-1, and saw mRNA as a potential way to do it.
“For the 20 years that we’ve worked together before anybody knew what RNA is, or cared, it was the two of us literally side by side at a bench working together,” Weissman said in an interview with Adam Smith of the Nobel Foundation.
In 2005, the duo made their 2023 Nobel Prize-winning breakthrough, detailing it in a relatively small journal, Immunity. (Their paper was rejected by larger journals, including Science and Nature.) They figured out that chemically modifying the nucleoside bases that make up mRNA allowed the molecule to slip past the body’s immune defenses. Karikó and Weissman followed up that finding by creating mRNA that’s more efficiently translated within cells, greatly boosting protein production. In 2020, scientists at Moderna and BioNTech (where Karikó worked from 2013 to 2022) rushed to craft vaccines against COVID, putting their methods to life-saving use.
The future of vaccines
Buoyed by the resounding success of mRNA vaccines, scientists are now hurriedly researching ways to use mRNA medicine against other infectious diseases, cancer, and genetic disorders. The now ubiquitous efforts stand in stark contrast to Karikó and Weissman’s previously unheralded struggles years ago as they doggedly worked to realize a shared dream that so many others shied away from. Katalin Karikó and Drew Weissman were brave enough to walk a scientific path that very well could have ended in a dead end, and for that, they absolutely deserve their 2023 Nobel Prize.
This article originally appeared on Big Think, home of the brightest minds and biggest ideas of all time.
Scientists turn pee into power in Uganda
At the edge of a dirt road flanked by trees and green mountains outside the town of Kisoro, Uganda, sits the concrete building that houses Sesame Girls School, where girls aged 11 to 19 can live, learn and, at least for a while, safely use a toilet. In many developing regions, toileting at night is especially dangerous for children. Without electrical power for lighting, kids may fall into the deep pits of the latrines through broken or unsteady floorboards. Girls are sometimes assaulted by men who hide in the dark.
For the Sesame School girls, though, bright LED lights, connected to tiny gadgets, chased the fears away. They got to use new, clean toilets lit by the power of their own pee. Some girls even used the light provided by the latrines to study.
Urine, whether animal or human, is more than waste. It’s a cheap and abundant resource. Each day across the globe, 8.1 billion humans make 4 billion gallons of pee. Cows, pigs, deer, elephants and other animals add more. By spending money to get rid of it, we waste a renewable resource that can serve more than one purpose. Microorganisms that feed on nutrients in urine can be used in a microbial fuel cell that generates electricity – or "pee power," as the Sesame girls called it.
Plus, urine contains water, phosphorus, potassium and nitrogen, the key ingredients plants need to grow and survive. Human urine could replace about 25 percent of current nitrogen and phosphorous fertilizers worldwide and could save water for gardens and crops. The average U.S. resident flushes a toilet bowl containing only pee and paper about six to seven times a day, which adds up to about 3,500 gallons of water down per year. Plus cows in the U.S. produce 231 gallons of the stuff each year.
Pee power
A conventional fuel cell uses chemical reactions to produce energy, as electrons move from one electrode to another to power a lightbulb or phone. Ioannis Ieropoulos, a professor and chair of Environmental Engineering at the University of Southampton in England, realized the same type of reaction could be used to make a fuel from microbes in pee.
Bacterial species like Shewanella oneidensis and Pseudomonas aeruginosa can consume carbon and other nutrients in urine and pop out electrons as a result of their digestion. In a microbial fuel cell, one electrode is covered in microbes, immersed in urine and kept away from oxygen. Another electrode is in contact with oxygen. When the microbes feed on nutrients, they produce the electrons that flow through the circuit from one electrod to another to combine with oxygen on the other side. As long as the microbes have fresh pee to chomp on, electrons keep flowing. And after the microbes are done with the pee, it can be used as fertilizer.
These microbes are easily found in wastewater treatment plants, ponds, lakes, rivers or soil. Keeping them alive is the easy part, says Ieropoulos. Once the cells start producing stable power, his group sequences the microbes and keeps using them.
Like many promising technologies, scaling these devices for mass consumption won’t be easy, says Kevin Orner, a civil engineering professor at West Virginia University. But it’s moving in the right direction. Ieropoulos’s device has shrunk from the size of about three packs of cards to a large glue stick. It looks and works much like a AAA battery and produce about the same power. By itself, the device can barely power a light bulb, but when stacked together, they can do much more—just like photovoltaic cells in solar panels. His lab has produced 1760 fuel cells stacked together, and with manufacturing support, there’s no theoretical ceiling, he says.
Although pure urine produces the most power, Ieropoulos’s devices also work with the mixed liquids of the wastewater treatment plants, so they can be retrofit into urban wastewater utilities.
This image shows how the pee-powered system works. Pee feeds bacteria in the stack of fuel cells (1), which give off electrons (2) stored in parallel cylindrical cells (3). These cells are connected to a voltage regulator (4), which smooths out the electrical signal to ensure consistent power to the LED strips lighting the toilet.
Courtesy Ioannis Ieropoulos
Key to the long-term success of any urine reclamation effort, says Orner, is avoiding what he calls “parachute engineering”—when well-meaning scientists solve a problem with novel tech and then abandon it. “The way around that is to have either the need come from the community or to have an organization in a community that is committed to seeing a project operate and maintained,” he says.
Success with urine reclamation also depends on the economy. “If energy prices are low, it may not make sense to recover energy,” says Orner. “But right now, fertilizer prices worldwide are generally pretty high, so it may make sense to recover fertilizer and nutrients.” There are obstacles, too, such as few incentives for builders to incorporate urine recycling into new construction. And any hiccups like leaks or waste seepage will cost builders money and reputation. Right now, Orner says, the risks are just too high.
Despite the challenges, Ieropoulos envisions a future in which urine is passed through microbial fuel cells at wastewater treatment plants, retrofitted septic tanks, and building basements, and is then delivered to businesses to use as agricultural fertilizers. Although pure urine produces the most power, Ieropoulos’s devices also work with the mixed liquids of the wastewater treatment plants, so they can be retrofitted into urban wastewater utilities where they can make electricity from the effluent. And unlike solar cells, which are a common target of theft in some areas, nobody wants to steal a bunch of pee.
When Ieropoulos’s team returned to wrap up their pilot project 18 months later, the school’s director begged them to leave the fuel cells in place—because they made a major difference in students’ lives. “We replaced it with a substantial photovoltaic panel,” says Ieropoulos, They couldn’t leave the units forever, he explained, because of intellectual property reasons—their funders worried about theft of both the technology and the idea. But the photovoltaic replacement could be stolen, too, leaving the girls in the dark.
The story repeated itself at another school, in Nairobi, Kenya, as well as in an informal settlement in Durban, South Africa. Each time, Ieropoulos vowed to return. Though the pandemic has delayed his promise, he is resolute about continuing his work—it is a moral and legal obligation. “We've made a commitment to ourselves and to the pupils,” he says. “That's why we need to go back.”
Urine as fertilizer
Modern day industrial systems perpetuate the broken cycle of nutrients. When plants grow, they use up nutrients the soil. We eat the plans and excrete some of the nutrients we pass them into rivers and oceans. As a result, farmers must keep fertilizing the fields while our waste keeps fertilizing the waterways, where the algae, overfertilized with nitrogen, phosphorous and other nutrients grows out of control, sucking up oxygen that other marine species need to live. Few global communities remain untouched by the related challenges this broken chain create: insufficient clean water, food, and energy, and too much human and animal waste.
The Rich Earth Institute in Vermont runs a community-wide urine nutrient recovery program, which collects urine from homes and businesses, transports it for processing, and then supplies it as fertilizer to local farms.
One solution to this broken cycle is reclaiming urine and returning it back to the land. The Rich Earth Institute in Vermont is one of several organizations around the world working to divert and save urine for agricultural use. “The urine produced by an adult in one day contains enough fertilizer to grow all the wheat in one loaf of bread,” states their website.
Notably, while urine is not entirely sterile, it tends to harbor fewer pathogens than feces. That’s largely because urine has less organic matter and therefore less food for pathogens to feed on, but also because the urinary tract and the bladder have built-in antimicrobial defenses that kill many germs. In fact, the Rich Earth Institute says it’s safe to put your own urine onto crops grown for home consumption. Nonetheless, you’ll want to dilute it first because pee usually has too much nitrogen and can cause “fertilizer burn” if applied straight without dilution. Other projects to turn urine into fertilizer are in progress in Niger, South Africa, Kenya, Ethiopia, Sweden, Switzerland, The Netherlands, Australia, and France.
Eleven years ago, the Institute started a program that collects urine from homes and businesses, transports it for processing, and then supplies it as fertilizer to local farms. By 2021, the program included 180 donors producing over 12,000 gallons of urine each year. This urine is helping to fertilize hay fields at four partnering farms. Orner, the West Virginia professor, sees it as a success story. “They've shown how you can do this right--implementing it at a community level scale."