A Team of Israeli Students Just Created Honey Without Bees

A Team of Israeli Students Just Created Honey Without Bees

The bee-free honey on the left, and the Israeli team that won the iGEM competition.

(Photo credit: Zeinat Awwad)



Can you make honey without honeybees? According to 12 Israeli students who took home a gold medal in the iGEM (International Genetically Engineered Machine) competition with their synthetic honey project, the answer is yes, you can.

The honey industry faces serious environmental challenges, like the mysterious Colony Collapse Disorder.

For the past year, the team from Technion-Israel Institute of Technology has been working on creating sustainable, artificial honey—no bees required. Why? As the team explains in a video on the project's website, "Studies have shown the amazing nutritional values of honey. However, the honey industry harms the environment, and particularly the bees. That's why vegans don't use honey and why our honey will be a great replacement."

Indeed, honey has long been a controversial product in the vegan community. Some say it's stealing an animal's food source (though bees make more honey than they can possibly use). Some avoid eating honey because it is an animal product and bees' natural habitats are disturbed by humans harvesting it. Others feel that because bees aren't directly killed or harmed in the production of honey, it's not actually unethical to eat.

However, there's no doubt that the honey industry faces some serious environmental challenges. Colony Collapse Disorder, a mysterious phenomenon in which worker bees in colonies disappear in large numbers without any real explanation, came to international attention in 2006. Several explanations from poisonous pesticides to immune-suppressing stress to new or emerging diseases have been posited, but no definitive cause has been found.

There's also the problem of human-managed honey farms having a negative impact on the natural honeybee population.

So how can honey be made without honeybees? It's all about bacteria and enzymes.

The way bees make honey is by collecting nectar from flowers, transporting it in their "honey stomach" (which is separate from their food stomach), and bringing it back to the hive, where it gets transferred from bee mouth to bee mouth. That transferal process reduces the moisture content from about 70 percent to 20 percent, and honey is formed.

The product is still currently under development.

The Technion students created a model of a synthetic honey stomach metabolic pathway, in which the bacterium Bacillus subtilis "learns" to produce honey. "The bacteria can independently control the production of enzymes, eventually achieving a product with the same sugar profile as real honey, and the same health benefits," the team explains. Bacillus subtilis, which is found in soil, vegetation, and our own gastrointestinal tracts, has a natural ability to produce catalase, one of the enzymes needed for honey production. The product is still currently under development.

Whether this project results in a real-world jar of honey we'll be able to buy at the grocery store remains to be seen, but imagine how happy the bees—and vegans—would be if it did.

Annie Reneau
Annie is a writer, wife, and mother of three with a penchant for coffee, wanderlust, and practical idealism. On good days, she enjoys the beautiful struggle of maintaining a well-balanced life. On bad days, she binges on chocolate and dreams of traveling the world alone.
Have You Heard of the Best Sport for Brain Health?

In this week's Friday Five, research points to this brain healthiest of sports. Plus, the natural way to reprogram cells to a younger state, the network that could underlie many different mental illnesses, and a new test could diagnose autism in newborns. Plus, scientists 3D print an ear and attach it to woman

Adobe Stock

The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.

Keep Reading Keep Reading
Matt Fuchs
Matt Fuchs is the host of the Making Sense of Science podcast and served previously as the editor-in-chief of Leaps.org. He writes as a contributor to the Washington Post, and his articles have also appeared in the New York Times, WIRED, Nautilus Magazine, Fortune Magazine and TIME Magazine. Follow him @fuchswriter.
Can blockchain help solve the Henrietta Lacks problem?

Marielle Gross, a professor at the University of Pittsburgh, shows patients a new app that tracks how their samples are used during biomedical research.

Marielle Gross

Science has come a long way since Henrietta Lacks, a Black woman from Baltimore, succumbed to cervical cancer at age 31 in 1951 -- only eight months after her diagnosis. Since then, research involving her cancer cells has advanced scientific understanding of the human papilloma virus, polio vaccines, medications for HIV/AIDS and in vitro fertilization.

Today, the World Health Organization reports that those cells are essential in mounting a COVID-19 response. But they were commercialized without the awareness or permission of Lacks or her family, who have filed a lawsuit against a biotech company for profiting from these “HeLa” cells.

While obtaining an individual's informed consent has become standard procedure before the use of tissues in medical research, many patients still don’t know what happens to their samples. Now, a new phone-based app is aiming to change that.

Keep Reading Keep Reading
Susan Kreimer
Susan Kreimer is a New York-based freelance journalist who has followed the landscape of health care since the late 1990s, initially as a staff reporter for major daily newspapers. She writes about breakthrough studies, personal health, and the business of clinical practice. Raised in the Chicago area, she holds a B.A. in Journalism/Mass Communication and French, with minors in German and Russian, from the University of Iowa and an M.S. from the Columbia University Graduate School of Journalism.