Bad Actors Getting Your Health Data Is the FBI’s Latest Worry
In February 2015, the health insurer Anthem revealed that criminal hackers had gained access to the company's servers, exposing the personal information of nearly 79 million patients. It's the largest known healthcare breach in history.
FBI agents worry that the vast amounts of healthcare data being generated for precision medicine efforts could leave the U.S. vulnerable to cyber and biological attacks.
That year, the data of millions more would be compromised in one cyberattack after another on American insurers and other healthcare organizations. In fact, for the past several years, the number of reported data breaches has increased each year, from 199 in 2010 to 344 in 2017, according to a September 2018 analysis in the Journal of the American Medical Association.
The FBI's Edward You sees this as a worrying trend. He says hackers aren't just interested in your social security or credit card number. They're increasingly interested in stealing your medical information. Hackers can currently use this information to make fake identities, file fraudulent insurance claims, and order and sell expensive drugs and medical equipment. But beyond that, a new kind of cybersecurity threat is around the corner.
Mr. You and others worry that the vast amounts of healthcare data being generated for precision medicine efforts could leave the U.S. vulnerable to cyber and biological attacks. In the wrong hands, this data could be used to exploit or extort an individual, discriminate against certain groups of people, make targeted bioweapons, or give another country an economic advantage.
Precision medicine, of course, is the idea that medical treatments can be tailored to individuals based on their genetics, environment, lifestyle or other traits. But to do that requires collecting and analyzing huge quantities of health data from diverse populations. One research effort, called All of Us, launched by the U.S. National Institutes of Health last year, aims to collect genomic and other healthcare data from one million participants with the goal of advancing personalized medical care.
Other initiatives are underway by academic institutions and healthcare organizations. Electronic medical records, genetic tests, wearable health trackers, mobile apps, and social media are all sources of valuable healthcare data that a bad actor could potentially use to learn more about an individual or group of people.
"When you aggregate all of that data together, that becomes a very powerful profile of who you are," Mr. You says.
A supervisory special agent in the biological countermeasures unit within the FBI's weapons of mass destruction directorate, it's Mr. You's job to imagine worst-case bioterror scenarios and figure out how to prevent and prepare for them.
That used to mean focusing on threats like anthrax, Ebola, and smallpox—pathogens that could be used to intentionally infect people—"basically the dangerous bugs," as he puts it. In recent years, advances in gene editing and synthetic biology have given rise to fears that rogue, or even well-intentioned, scientists could create a virulent virus that's intentionally, or unintentionally, released outside the lab.
"If a foreign source, especially a criminal one, has your biological information, then they might have some particular insights into what your future medical needs might be and exploit that."
While Mr. You is still tracking those threats, he's been traveling around the country talking to scientists, lawyers, software engineers, cyber security professionals, government officials and CEOs about new security threats—those posed by genetic and other biological data.
Emerging threats
Mr. You says one possible situation he can imagine is the potential for nefarious actors to use an individual's sensitive medical information to extort or blackmail that person.
"If a foreign source, especially a criminal one, has your biological information, then they might have some particular insights into what your future medical needs might be and exploit that," he says. For instance, "what happens if you have a singular medical condition and an outside entity says they have a treatment for your condition?" You could get talked into paying a huge sum of money for a treatment that ends up being bogus.
Or what if hackers got a hold of a politician or high-profile CEO's health records? Say that person had a disease-causing genetic mutation that could affect their ability to carry out their job in the future and hackers threatened to expose that information. These scenarios may seem far-fetched, but Mr. You thinks they're becoming increasingly plausible.
On a wider scale, Kavita Berger, a scientist at Gryphon Scientific, a Washington, D.C.-area life sciences consulting firm, worries that data from different populations could be used to discriminate against certain groups of people, like minorities and immigrants.
For instance, the advocacy group Human Rights Watch in 2017 flagged a concerning trend in China's Xinjiang territory, a region with a history of government repression. Police there had purchased 12 DNA sequencers and were collecting and cataloging DNA samples from people to build a national database.
"The concern is that this particular province has a huge population of the Muslim minority in China," Ms. Berger says. "Now they have a really huge database of genetic sequences. You have to ask, why does a police station need 12 next-generation sequencers?"
Also alarming is the potential that large amounts of data from different groups of people could lead to customized bioweapons if that data ends up in the wrong hands.
Eleonore Pauwels, a research fellow on emerging cybertechnologies at United Nations University's Centre for Policy Research, says new insights gained from genomic and other data will give scientists a better understanding of how diseases occur and why certain people are more susceptible to certain diseases.
"As you get more and more knowledge about the genomic picture and how the microbiome and the immune system of different populations function, you could get a much deeper understanding about how you could target different populations for treatment but also how you could eventually target them with different forms of bioagents," Ms. Pauwels says.
Economic competitiveness
Another reason hackers might want to gain access to large genomic and other healthcare datasets is to give their country a leg up economically. Many large cyber-attacks on U.S. healthcare organizations have been tied to Chinese hacking groups.
"This is a biological space race and we just haven't woken up to the fact that we're in this race."
"It's becoming clear that China is increasingly interested in getting access to massive data sets that come from different countries," Ms. Pauwels says.
A year after U.S. President Barack Obama conceived of the Precision Medicine Initiative in 2015—later renamed All of Us—China followed suit, announcing the launch of a 15-year, $9 billion precision health effort aimed at turning China into a global leader in genomics.
Chinese genomics companies, too, are expanding their reach outside of Asia. One company, WuXi NextCODE, which has offices in Shanghai, Reykjavik, and Cambridge, Massachusetts, has built an extensive library of genomes from the U.S., China and Iceland, and is now setting its sights on Ireland.
Another Chinese company, BGI, has partnered with Children's Hospital of Philadelphia and Sinai Health System in Toronto, and also formed a collaboration with the Smithsonian Institute to sequence all species on the planet. BGI has built its own advanced genomic sequencing machines to compete with U.S.-based Illumina.
Mr. You says having access to all this data could lead to major breakthroughs in healthcare, such as new blockbuster drugs. "Whoever has the largest, most diverse dataset is truly going to win the day and come up with something very profitable," he says.
Some direct-to-consumer genetic testing companies with offices in the U.S., like Dante Labs, also use BGI to process customers' DNA.
Experts worry that China could race ahead the U.S. in precision medicine because of Chinese laws governing data sharing. Currently, China prohibits the exportation of genetic data without explicit permission from the government. Mr. You says this creates an asymmetry in data sharing between the U.S. and China.
"This is a biological space race and we just haven't woken up to the fact that we're in this race," he said in January at an American Society for Microbiology conference in Washington, D.C. "We don't have access to their data. There is absolutely no reciprocity."
Protecting your data
While Mr. You has been stressing the importance of data security to anyone who will listen, the National Academies of Sciences, Engineering, and Medicine, which makes scientific and policy recommendations on issues of national importance, has commissioned a study on "safeguarding the bioeconomy."
In the meantime, Ms. Berger says organizations that deal with people's health data should assess their security risks and identify potential vulnerabilities in their systems.
As for what individuals can do to protect themselves, she urges people to think about the different ways they're sharing healthcare data—such as via mobile health apps and wearables.
"Ask yourself, what's the benefit of sharing this? What are the potential consequences of sharing this?" she says.
Mr. You also cautions people to think twice before taking consumer DNA tests. They may seem harmless, he says, but at the end of the day, most people don't know where their genetic information is going. "If your genetic sequence is taken, once it's gone, it's gone. There's nothing you can do about it."
Shoot for the Moon: Its Surface Contains a Pot of Gold
Here's a riddle: What do the Moon, nuclear weapons, clean energy of the future, terrorism, and lung disease all have in common?
One goal of India's upcoming space probe is to locate deposits of helium-3 that are worth trillions of dollars.
The answer is helium-3, a gas that's extremely rare on Earth but 100 million times more abundant on the Moon. This past October, the Lockheed Martin corporation announced a concept for a lunar landing craft that may return humans to the Moon in the coming decade, and yesterday China successfully landed the Change-4 probe on the far side of the Moon. Landing inside the Moon's deepest crater, the Chinese achieved a first in space exploration history.
Meanwhile, later this month, India's Chandrayaan-2 space probe will also land on the lunar surface. One of its goals is to locate deposits of helium-3 that are worth trillions of dollars, because it could be a fuel for nuclear fusion energy to generate electricity or propel a rocket.
The standard way that nuclear engineers are trying to achieve sustainable fusion uses fuels that are more plentiful on Earth: deuterium and tritium. But MIT researchers have found that adding small amounts of helium-3 to the mix could make it much more efficient, and thus a viable energy source much sooner that once thought.
Even if fusion is proven practical tomorrow, any kind of nuclear energy involves long waits for power plant construction measured in decades. However, mining helium-3 could be useful now, because of its non-energy applications. A major one is its ability to detect neutrons coming from plutonium that could be used in terrorist attacks. Here's how it works: a small amount of helium-3 is contained within a forensic instrument. When a neutron hits an atom of helium-3, the reaction produces tritium, a proton, and an electrical charge, alerting investigators to the possibility that plutonium is nearby.
Ironically, as global concern about a potential for hidden nuclear material increased in the early 2000s, so did the supply of helium-3 on Earth. That's because helium-3 comes from the decay of tritium, used in thermonuclear warheads (H-bombs). Thousands of such weapons have been dismantled from U.S. and Russian arsenals, making helium-3 available for plutonium detection, research, and other applications--including in the world of healthcare.
Helium-3 can help doctors diagnose lung diseases, since it enables imaging of the lungs in real time.
Helium-3 dramatically improves the ability of doctors to image the lungs in a range of diseases including asthma, chronic obstructive pulmonary disease and emphysema, cystic fibrosis, and bronchopulmonary dysplasia, which happens particularly in premature infants. Specifically, helium-3 is useful in magnetic resonance imaging (MRI), a procedure that creates images from within the body for diagnostic purposes.
But while a standard MRI allows doctors to visualize parts of the body like the heart or brain, it's useless for seeing the lungs. Because lungs are filled with air, which is much less dense than water or fat, effectively no signals are produced that would enable imaging.
To compensate for this problem, a patient can inhale gas that is hyperpolarized –meaning enhanced with special procedures so that the magnetic resonance signals from the lungs are finally readable. This gas is safe to breathe when mixed with enough oxygen to support life. Helium-3 is one such gas that can be hyperpolarized; since it produces such a strong signal, the MRI can literally see the air inside the lungs and in all of the airways, revealing intricate details of the bronchopulmonary tree. And it can do this in real time
The capability to show anatomic details of the lungs and airways, and the ability to display functional imaging as a patient breathes, makes helium-3 MRI far better than the standard method of testing lung function. Called spirometry, this method tells physicians how the lungs function overall, but does not home in on particular areas that may be causing a problem. Plus, spirometry requires patients to follow instructions and hold their breath, so it is not great for testing young children with pulmonary disease.
In recent years, the cost of helium-3 on Earth has skyrocketed.
Over the past several years, researchers have been developing MRI for lung testing using other hyperpolarized gases. The main alternative to helium-3 is xenon-129. Over the years, researchers have learned to overcome certain disadvantages of the latter, such as its potential to put patients to sleep. Since helium-3 provides the strongest signal, though, it is still the best gas for MRI studies in many lung conditions.
But the supply of helium-3 on Earth has been decreasing in recent years, due to the declining rate of dismantling of warheads, just as the Department of Homeland Security has required more and more of the gas for neutron detection. As a result, the cost of the gas has skyrocketed. Less is available now for medical uses – unless, of course, we begin mining it on the moon.
The question is: Are the benefits worth the 239,000-mile trip?
Should Organ Donors Be Paid?
Deanna Santana had assumed that people on organ transplant lists received matches. She didn't know some died while waiting. But in May 2011, after her 17-year-old son, Scott, was killed in a car accident, she learned what a precious gift organ and tissue donation can be.
"I would estimate it cost our family about $4,000 for me to donate a kidney to a stranger."
His heart, lungs, kidneys, liver and pancreas saved five people. His corneas enabled two others to see. And his bones, connective tissues and veins helped 73 individuals.
The donation's impact had a profound effect on his mother as well. In September 2016, she agreed to donate a kidney in a paired exchange of four people making the same sacrifice for four compatible strangers.
She gave up two weeks' worth of paid vacation to recuperate and covered lodging costs for loved ones during her transplant. Eventually, she qualified for state disability for part of her leave, but the compensation was less than her salary as public education and relations manager at Sierra Donor Services, an organ procurement organization in West Sacramento, California.
"I would estimate it cost our family about $4,000 for me to donate a kidney to a stranger," says Santana, 51. Despite the monetary hardship, she "would do it again in a heartbeat."
While some contend it's exploitative to entice organ donors and their families with compensation, others maintain they should be rewarded for extending their generosity while risking complications and recovering from donation surgery. But many agree on one point: The focus should be less on paying donors and more on removing financial barriers that may discourage interested prospects from doing a good deed.
"There's significant potential risk associated with donating a kidney, some of which we're continuing to learn," says transplant surgeon Matthew Cooper, a board member of the National Kidney Foundation and co-chair of its Transplant Task Force.
Although most kidneys are removed laparoscopically, reducing hospitalization and recuperation time, complications can occur. The risks include wound and urinary tract infections, pneumonia, blood clots, injury to local nerves causing decreased sensation in the hip or thigh, acute blood loss requiring transfusion and even death, Cooper says.
"We think that donation is a cost-neutral opportunity. It, in fact, is not."
Meanwhile, from a financial standpoint, estimates have found it costs a kidney donor in the United States an average of $3,000 to navigate the entire transplant process, which may include time off from work, travel to and from the hospital, accommodations, food and child care expenses.
"We think that donation is a cost-neutral opportunity. It, in fact, is not," says Cooper, who is also Director of Kidney and Pancreas Transplantation at MedStar Georgetown Transplant Institute in Washington, D.C.
The National Organ Transplant Act of 1984 makes it illegal to sell human organs but did not prohibit payment for the donation of human plasma, sperm and egg cells.
Unlike plasma, sperm and eggs cells—which are "renewable resources"—a kidney is irreplaceable, says John J. Friedewald, a nephrologist who is medical director of kidney transplantation at Northwestern Memorial Hospital in Chicago.
Offering some sort of incentives could lessen the overall burden on donors while benefiting many more potential recipients. "We can eliminate the people waiting on the list and dying, at least for kidneys," Friedewald says.
On the other hand, incentives may influence an individual to the point that the donation is made purely for monetary gain. "It's a delicate balance," he explains, "because so much of the transplant system has been built on altruism."
That's where doing away with the "disincentives" comes into the equation. Compensating donors for the costs they endure would be a reasonable compromise, Friedewald says.
Depending on the state, living donors may deduct up to $10,000 from their adjusted gross income under the Organ Donation Tax Deduction Act for the year in which the transplantation occurs. "Human organ" applies to all or part of a liver, pancreas, kidney, intestine, lung or bone marrow. The subtracted modification may be claimed for only unreimbursed travel and lodging expenses and lost wages.
For some or many donors, the tax credit doesn't go far enough in offsetting their losses, but they often take it in stride, says Chaya Lipschutz, a Brooklyn, N.Y.-based matchmaker for donors and recipients, who launched the website KidneyMitzvah.com in 2009.
Seeking compensation for lost wages "is extremely rare" in her experience. "In all the years of doing this," she recalls, "I only had two people who donated a kidney who needed to get paid for lost wages." She finds it "pretty amazing that mostly all who contact don't ask."
Lipschutz, an Orthodox Jew, has walked in a donor's shoes. In September 2005, at age 48, she donated a kidney to a stranger after coming across an ad in a weekly Jewish newspaper. The ad stated: "Please help save a Jewish life—New Jersey mother of two in dire need of kidney—Whoever saves one life from Israel it is as if they saved an entire nation."
To make matches, Lipschutz posts in various online groups in the United States and Israel. Donors in Israel may receive "refunds" for loss of earnings, travel expenses, psychological treatment, recovery leave, and insurance. They also qualify for visits to national parks and nature reserves without entrance fees, Lipschutz says.
"There has been an attempt to figure out what would constitute fair compensation without the appearance that people are selling their organs or their loved ones' organs."
Kidneys can be procured from healthy living donors or patients who have undergone circulatory or brain death.
"The real dilemma arises with payment for living donation, which would favor poorer individuals to donate who would not necessarily do so," says Dr. Cheryl L. Kunis, a New York-based nephrologist whose practice consists primarily of kidney transplant recipients. "In addition, such payment for living donation has not demonstrated to improve a donor's socioeconomic status globally."
Living kidney donation has the highest success rate. But organs from young and previously healthy individuals who die in accidents or from overdoses, especially in the opioid epidemic, often work just as well as kidneys from cadaveric donors who succumb to trauma, Kunis says.
In these tragic circumstances, she notes that the decision to donate is often left to an individual's grieving family members when a living will isn't available. A payment toward funeral expenses, for instance, could tip their decision in favor of organ donation.
A similar scenario presents when a patient with a beating heart is on the verge of dying, and the family is unsure about consenting to organ donation, says Jonathan D. Moreno, a professor in the department of medical ethics and health policy at the University of Pennsylvania.
"There has been an attempt to figure out what would constitute fair compensation," he says, "without the appearance that people are selling their organs or their loved ones' organs."
The overarching concern remains the same: Compensating organ donors could lead to exploitation of socioeconomically disadvantaged groups. "What's likely to finally resolve" this bioethics debate, Moreno foresees, "is patient-compatible organs grown in pigs as the basic science of xenotransplants (between species) seems to be progressing."
Cooper, the transplant surgeon at Georgetown, believes more potential donors would come forward if financial barriers weren't an issue. Of the ones who end up giving a part of themselves, with or without reimbursement, "the overwhelming majority look back upon it as an extremely positive experience," he says. After all, "they're lifesavers. They should be celebrated."