Could Biologically Enhancing Our Morality Save Our Species?
As a species, we are prone to weaponizing. There is a famous anecdote from Wulf Schievenhovel, a German anthropologist who was working in the highlands of New Guinea studying a local tribe. One day, he offered two tribesmen a flight in an airplane. They duly accepted but showed up with two large stones. When he asked why, they told him that they wanted to drop them on a neighboring village. Ethologist Frans de Waal later remarked on this story that Schievenhovel had effectively "witnessed the invention of the bomb."
Today you don't have to be Putin or Kim Jong Un to pose an existential threat.
Modern technology has given us access to more than just rocks. In 2011, a Swedish man was arrested after attempting a nuclear fission in his kitchen. And in the inaugural issue of this magazine, my colleague Hank Greely raised a terrifying prospect:
"do-it-yourself hobbyists can use CRISPR [gene editing]… to change the genomes of whole species of living things – domestic or wild; animal, vegetable, or microbial – cheaply, easily, and before we even know it is happening."
In science fiction, it is typically governments that take over technologies and use them for evil. That risk is of course no fiction. It is an ongoing problem that we have addressed through institutions: democracies, constitutions, legal systems and international treaties, and groups working together as checks and balances. It isn't perfect, but it has worked (so far).
Today you don't have to be Putin or Kim Jong Un to pose an existential threat. We are rapidly acquiring the technological ability for individuals and groups not just to cause major harm, but to do so exactly as Hank said: "cheaply, easily, and before we even know it is happening."
How should we address this problem? Together with Ingmar Persson, a fellow philosophy professor at Gothenburg, Sweden, I have argued that while education, institutions and good policing are important, we may need to think more radically.
We could adapt our biology so that we can appreciate the suffering of foreign or future people in the same instinctive way we do our friends and neighbors.
We evolved, along with the New Guinea tribesmen, to care about our small group and to be suspicious of outsiders. We evolved to cooperate well within our group, at a size where we could keep an eye on free riders. And we evolved to have the ability, and occasionally the desire to harm others, but with a natural limit on the amount of harm we could do—at least before others could step in to prevent, punish or kill us.
Our limitations have also become apparent in another form of existential threat: resource depletion. Despite our best efforts at educating, nudging, and legislating on climate change, carbon dioxide emissions in 2017 are expected to come in at the highest ever following a predicted rise of 2 percent. Why? We aren't good at cooperating in larger groups where freeriding is not easily spotted. We also deal with problems in order of urgency. A problem close by is much more significant to us than a problem in the future. That's why even if we accept there is a choice between economic recession now or natural disasters and potential famine in the future, we choose to carry on drilling for oil. And if the disasters and famine are present day, but geographically distant, we still choose to carry on drilling.
So what is our radical solution? We propose that there is a need for what we call moral bioenhancement. That is, for seeking a biological intervention that can help us overcome our evolved moral limitations. For example, adapting our biology so that we can appreciate the suffering of foreign or future people in the same instinctive way we do our friends and neighbors. Or, in the case of individuals, in addressing the problem of psychopathy from a biological perspective.
There is no reason in principle why humans could not be genetically modified...to make them kinder, happier, more conscientious, altruistic and just.
We have been dramatically successful at modifying various moral characteristics of non-human animals. Over ten thousand years or so, we have turned wolves into dogs by selective breeding, and those dogs into breeds with behavioural as well as physical characteristics: certain breeds can be faithful, hard working, good tempered and intelligent (or the opposite). Scientists have manipulated the expression of genes in prairie voles to cause them to form a mate bond more quickly, and in monkeys to make them work harder. There is no reason in principle why humans could not be genetically modified using gene editing, or their brains modified in other ways, to make them kinder, happier, more conscientious, altruistic and just.
One objection is that this is a pipe dream: even if it is acceptable to do this, it is so unlikely to be achievable, it is not worth pursuing. However, research has shown that we are already morally modified. This is widely accepted when it comes to negative effects. For example, we all know that alcohol can lead people to aggressive or other destructive behaviours that they would not have countenanced sober. In a 2008 case, a retired UK teacher was cleared of child pornography charges after he successfully argued his behaviour was caused by a drug prescribed for his Parkinson's disease. There is also evidence that we can be morally modified in a more positive direction. For example, SSRIs like Prozac, a class of drugs widely used to treat depression, have been shown to act on healthy volunteers to make them more cooperative and less critical.
Another objection is that we need the negative aspects of our human character. We need people who can fight wars. We need to be able to blot out the suffering of the wider world: to experience it as we would if it applied to our nearest and dearest would be unbearable. This might be so. If aggressiveness and denial, or strong bonding to small communities, are important traits, it is important that we understand how, and to what degree, they should be controlled. It is unlikely that nature has dished out exactly the right levels of all morally relevant characteristics on an individual or population level. We don't claim to have all the answers to what characteristics we need to enhance, and what characteristics we need to diminish. But we see no reason to believe that the status quo is the optimum.
We haven't argued that we should go blindly in now with half-baked moral enhancers, or that we should forget about moral education, or legal solutions. Evolution has a built-in response to existential threats through adaptation. But adaptation takes generations and can't deal with threats that take out a whole population. Some threats are too important —and too urgent—to be left to chance.
Have You Heard of the Best Sport for Brain Health?
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the promising studies covered in this week's Friday Five:
- Reprogram cells to a younger state
- Pick up this sport for brain health
- Do all mental illnesses have the same underlying cause?
- New test could diagnose autism in newborns
- Scientists 3D print an ear and attach it to woman
Can blockchain help solve the Henrietta Lacks problem?
Science has come a long way since Henrietta Lacks, a Black woman from Baltimore, succumbed to cervical cancer at age 31 in 1951 -- only eight months after her diagnosis. Since then, research involving her cancer cells has advanced scientific understanding of the human papilloma virus, polio vaccines, medications for HIV/AIDS and in vitro fertilization.
Today, the World Health Organization reports that those cells are essential in mounting a COVID-19 response. But they were commercialized without the awareness or permission of Lacks or her family, who have filed a lawsuit against a biotech company for profiting from these “HeLa” cells.
While obtaining an individual's informed consent has become standard procedure before the use of tissues in medical research, many patients still don’t know what happens to their samples. Now, a new phone-based app is aiming to change that.
Tissue donors can track what scientists do with their samples while safeguarding privacy, through a pilot program initiated in October by researchers at the Johns Hopkins Berman Institute of Bioethics and the University of Pittsburgh’s Institute for Precision Medicine. The program uses blockchain technology to offer patients this opportunity through the University of Pittsburgh's Breast Disease Research Repository, while assuring that their identities remain anonymous to investigators.
A blockchain is a digital, tamper-proof ledger of transactions duplicated and distributed across a computer system network. Whenever a transaction occurs with a patient’s sample, multiple stakeholders can track it while the owner’s identity remains encrypted. Special certificates called “nonfungible tokens,” or NFTs, represent patients’ unique samples on a trusted and widely used blockchain that reinforces transparency.
Blockchain could be used to notify people if cancer researchers discover that they have certain risk factors.
“Healthcare is very data rich, but control of that data often does not lie with the patient,” said Julius Bogdan, vice president of analytics for North America at the Healthcare Information and Management Systems Society (HIMSS), a Chicago-based global technology nonprofit. “NFTs allow for the encapsulation of a patient’s data in a digital asset controlled by the patient.” He added that this technology enables a more secure and informed method of participating in clinical and research trials.
Without this technology, de-identification of patients’ samples during biomedical research had the unintended consequence of preventing them from discovering what researchers find -- even if that data could benefit their health. A solution was urgently needed, said Marielle Gross, assistant professor of obstetrics, gynecology and reproductive science and bioethics at the University of Pittsburgh School of Medicine.
“A researcher can learn something from your bio samples or medical records that could be life-saving information for you, and they have no way to let you or your doctor know,” said Gross, who is also an affiliate assistant professor at the Berman Institute. “There’s no good reason for that to stay the way that it is.”
For instance, blockchain could be used to notify people if cancer researchers discover that they have certain risk factors. Gross estimated that less than half of breast cancer patients are tested for mutations in BRCA1 and BRCA2 — tumor suppressor genes that are important in combating cancer. With normal function, these genes help prevent breast, ovarian and other cells from proliferating in an uncontrolled manner. If researchers find mutations, it’s relevant for a patient’s and family’s follow-up care — and that’s a prime example of how this newly designed app could play a life-saving role, she said.
Liz Burton was one of the first patients at the University of Pittsburgh to opt for the app -- called de-bi, which is short for decentralized biobank -- before undergoing a mastectomy for early-stage breast cancer in November, after it was diagnosed on a routine mammogram. She often takes part in medical research and looks forward to tracking her tissues.
“Anytime there’s a scientific experiment or study, I’m quick to participate -- to advance my own wellness as well as knowledge in general,” said Burton, 49, a life insurance service representative who lives in Carnegie, Pa. “It’s my way of contributing.”
Liz Burton was one of the first patients at the University of Pittsburgh to opt for the app before undergoing a mastectomy for early-stage breast cancer.
Liz Burton
The pilot program raises the issue of what investigators may owe study participants, especially since certain populations, such as Black and indigenous peoples, historically were not treated in an ethical manner for scientific purposes. “It’s a truly laudable effort,” Tamar Schiff, a postdoctoral fellow in medical ethics at New York University’s Grossman School of Medicine, said of the endeavor. “Research participants are beautifully altruistic.”
Lauren Sankary, a bioethicist and associate director of the neuroethics program at Cleveland Clinic, agrees that the pilot program provides increased transparency for study participants regarding how scientists use their tissues while acknowledging individuals’ contributions to research.
However, she added, “it may require researchers to develop a process for ongoing communication to be responsive to additional input from research participants.”
Peter H. Schwartz, professor of medicine and director of Indiana University’s Center for Bioethics in Indianapolis, said the program is promising, but he wonders what will happen if a patient has concerns about a particular research project involving their tissues.
“I can imagine a situation where a patient objects to their sample being used for some disease they’ve never heard about, or which carries some kind of stigma like a mental illness,” Schwartz said, noting that researchers would have to evaluate how to react. “There’s no simple answer to those questions, but the technology has to be assessed with an eye to the problems it could raise.”
To truly make a difference, blockchain must enable broad consent from patients, not just de-identification.
As a result, researchers may need to factor in how much information to share with patients and how to explain it, Schiff said. There are also concerns that in tracking their samples, patients could tell others what they learned before researchers are ready to publicly release this information. However, Bogdan, the vice president of the HIMSS nonprofit, believes only a minimal study identifier would be stored in an NFT, not patient data, research results or any type of proprietary trial information.
Some patients may be confused by blockchain and reluctant to embrace it. “The complexity of NFTs may prevent the average citizen from capitalizing on their potential or vendors willing to participate in the blockchain network,” Bogdan said. “Blockchain technology is also quite costly in terms of computational power and energy consumption, contributing to greenhouse gas emissions and climate change.”
In addition, this nascent, groundbreaking technology is immature and vulnerable to data security flaws, disputes over intellectual property rights and privacy issues, though it does offer baseline protections to maintain confidentiality. To truly make a difference, blockchain must enable broad consent from patients, not just de-identification, said Robyn Shapiro, a bioethicist and founding attorney at Health Sciences Law Group near Milwaukee.
The Henrietta Lacks story is a prime example, Shapiro noted. During her treatment for cervical cancer at Johns Hopkins, Lacks’s tissue was de-identified (albeit not entirely, because her cell line, HeLa, bore her initials). After her death, those cells were replicated and distributed for important and lucrative research and product development purposes without her knowledge or consent.
Nonetheless, Shapiro thinks that the initiative by the University of Pittsburgh and Johns Hopkins has potential to solve some ethical challenges involved in research use of biospecimens. “Compared to the system that allowed Lacks’s cells to be used without her permission, Shapiro said, “blockchain technology using nonfungible tokens that allow patients to follow their samples may enhance transparency, accountability and respect for persons who contribute their tissue and clinical data for research.”
Read more about laws that have prevented people from the rights to their own cells.