Black Participants Are Sorely Absent from Medical Research
After years of suffering from mysterious symptoms, my mother Janice Thomas finally found a doctor who correctly diagnosed her with two autoimmune diseases, Lupus and Sjogren's. Both diseases are more prevalent in the black population than in other races and are often misdiagnosed.
The National Institutes of Health has found that minorities make up less than 10 percent of trial participants.
Like many chronic health conditions, a lack of understanding persists about their causes, individual manifestations, and best treatment strategies.
On the search for relief from chronic pain, my mother started researching options and decided to participate in clinical trials as a way to gain much-needed insights. In return, she received discounted medical testing and has played an active role in finding answers for all.
"When my doctor told me I could get financial or medical benefits from participating in clinical trials for the same test I was already doing, I figured it would be an easy way to get some answers at little to no cost," she says.
As a person of color, her presence in clinical studies is rare. The National Institutes of Health has found that minorities make up less than 10 percent of trial participants.
Without trial participation that is reflective of the general population, pharmaceutical companies and medical professionals are left guessing how various drugs work across racial lines. For example, albuterol, a widely used asthma treatment, was found to have decreased effectiveness for black American and Puerto Rican children. Many high mortality conditions, like cancer, also show different outcomes based on race.
Over the last decade, the pervasive lack of representation has left communities of color demanding higher levels of involvement in the research process. However, no consensus yet exists on how best to achieve this.
But experts suggest that before we can improve black participation in medical studies, key misconceptions must be addressed, such as the false assumption that such patients are unwilling to participate because they distrust scientists.
Jill A. Fisher, a professor in the Center for Bioethics at the University of North Carolina at Chapel Hill, learned in one study that mistrust wasn't the main barrier for black Americans. "There is a lot of evidence that researchers' recruitment of black Americans is generally poorly done, with many black patients simply not asked," Fisher says. "Moreover, the underrepresentation of black Americans is primarily true for efficacy trials - those testing whether an investigational drug might therapeutically benefit patients with specific illnesses."
Without increased minority participation, research will not accurately reflect the diversity of the general population.
Dr. Joyce Balls-Berry, a psychiatric epidemiologist and health educator, agrees that black Americans are often overlooked in the process. One study she conducted found that "enrollment of minorities in clinical trials meant using a variety of culturally appropriate strategies to engage participants," she explained.
To overcome this hurdle, The National Black Church Initiative (NBCI), a faith-based organization made up of 34,000 churches and over 15.7 million African Americans, last year urged the Food and Drug Administration to mandate diversity in all clinical trials before approving a drug or device. However, the FDA declined to implement the mandate, declaring that they don't have the authority to regulate diversity in clinical trials.
"African Americans have not been successfully incorporated into the advancement of medicine and research technologies as legitimate and natural born citizens of this country," admonishes NBCI's president Rev. Anthony Evans.
His words conjure a reminder of the medical system's insidious history for people of color. The most infamous incident is the Tuskegee syphilis scandal, in which white government doctors perpetrated harmful experiments on hundreds of unsuspecting black men for forty years, until the research was shut down in the early 1970s.
Today, in the second decade of twenty-first century, the pernicious narrative that blacks are outsiders in science and medicine must be challenged, says Dr. Danielle N. Lee, assistant professor of biological sciences at Southern Illinois University. And having majority white participants in clinical trials only furthers the notion that "whiteness" is the default.
According to Lee, black individuals often see themselves disconnected from scientific and medical processes. "One of the critiques with science and medical research is that communities of color, and black communities in particular, regard ourselves as outsiders of science," Lee says. "We are othered."
Without increased minority participation, research will not accurately reflect the diversity of the general population.
"We are all human, but we are different, and yes, even different populations of people require modified medical responses," she points out.
Another obstacle is that many trials have health requirements that exclude black Americans, like not wanting individuals who have high blood pressure or a history of stroke. Considering that this group faces health disparities at a higher rate than whites, this eliminates eligibility for millions of potential participants.
One way to increase the diversity in sample participation without an FDA mandate is to include more black Americans in both volunteer and clinical roles during the research process to increase accountability in treatment, education, and advocacy.
"When more of us participate in clinical trials, we help build out the basic data sets that account for health disparities from the start, not after the fact," Lee says. She also suggests that researchers involve black patient representatives throughout the clinical trial process, from the study design to the interpretation of results.
"This allows for the black community to give insight on how to increase trial enrollment and help reduce stigma," she explains.
Thankfully, partnerships are popping up like the one between The Howard University's Cancer Center and Driver, a platform that connects cancer patients to treatment and trials. These sorts of targeted and culturally tailored efforts allow black patients to receive assistance from well-respected organizations.
Some observers suggest that the federal government and pharmaceutical industries must step up to address the gap.
However, some experts say that the black community should not be held solely responsible for solving a problem it did not cause. Instead, some observers suggest that the federal government and pharmaceutical industries must step up to address the gap.
According to Balls-Berry, socioeconomic barriers like transportation, time off work, and childcare related to trial participation must be removed. "These are real-world issues and yet many times researchers have not included these things in their budgets."
When asked to comment, a spokesperson for BIO, the world's largest biotech trade association, emailed the following statement:
"BIO believes that that our members' products and services should address the needs of a diverse population, and enhancing participation in clinical trials by a diverse patient population is a priority for BIO and our member companies. By investing in patient education to improve awareness of clinical trial opportunities, we can reduce disparities in clinical research to better reflect the country's changing demographics."
For my mother, the patient suffering from autoimmune disease, the need for broad participation in medical research is clear. "Without clinical trials, we would have less diagnosis and solutions to diseases," she says. "I think it's an underutilized resource."
Is there a robot nanny in your child's future?
From ROBOTS AND THE PEOPLE WHO LOVE THEM: Holding on to Our Humanity in an Age of Social Robots by Eve Herold. Copyright © 2024 by the author and reprinted by permission of St. Martin’s Publishing Group.
Could the use of robots take some of the workload off teachers, add engagement among students, and ultimately invigorate learning by taking it to a new level that is more consonant with the everyday experiences of young people? Do robots have the potential to become full-fledged educators and further push human teachers out of the profession? The preponderance of opinion on this subject is that, just as AI and medical technology are not going to eliminate doctors, robot teachers will never replace human teachers. Rather, they will change the job of teaching.
A 2017 study led by Google executive James Manyika suggested that skills like creativity, emotional intelligence, and communication will always be needed in the classroom and that robots aren’t likely to provide them at the same level that humans naturally do. But robot teachers do bring advantages, such as a depth of subject knowledge that teachers can’t match, and they’re great for student engagement.
The teacher and robot can complement each other in new ways, with the teacher facilitating interactions between robots and students. So far, this is the case with teaching “assistants” being adopted now in China, Japan, the U.S., and Europe. In this scenario, the robot (usually the SoftBank child-size robot NAO) is a tool for teaching mainly science, technology, engineering, and math (the STEM subjects), but the teacher is very involved in planning, overseeing, and evaluating progress. The students get an entertaining and enriched learning experience, and some of the teaching load is taken off the teacher. At least, that’s what researchers have been able to observe so far.
To be sure, there are some powerful arguments for having robots in the classroom. A not-to-be-underestimated one is that robots “speak the language” of today’s children, who have been steeped in technology since birth. These children are adept at navigating a media-rich environment that is highly visual and interactive. They are plugged into the Internet 24-7. They consume music, games, and huge numbers of videos on a weekly basis. They expect to be dazzled because they are used to being dazzled by more and more spectacular displays of digital artistry. Education has to compete with social media and the entertainment vehicles of students’ everyday lives.
Another compelling argument for teaching robots is that they help prepare students for the technological realities they will encounter in the real world when robots will be ubiquitous. From childhood on, they will be interacting and collaborating with robots in every sphere of their lives from the jobs they do to dealing with retail robots and helper robots in the home. Including robots in the classroom is one way of making sure that children of all socioeconomic backgrounds will be better prepared for a highly automated age, when successfully using robots will be as essential as reading and writing. We’ve already crossed this threshold with computers and smartphones.
Students need multimedia entertainment with their teaching. This is something robots can provide through their ability to connect to the Internet and act as a centralized host to videos, music, and games. Children also need interaction, something robots can deliver up to a point, but which humans can surpass. The education of a child is not just intended to make them technologically functional in a wired world, it’s to help them grow in intellectual, creative, social, and emotional ways. When considered through this perspective, it opens the door to questions concerning just how far robots should go. Robots don’t just teach and engage children; they’re designed to tug at their heartstrings.
It’s no coincidence that many toy makers and manufacturers are designing cute robots that look and behave like real children or animals, says Turkle. “When they make eye contact and gesture toward us, they predispose us to view them as thinking and caring,” she has written in The Washington Post. “They are designed to be cute, to provide a nurturing response” from the child. As mentioned previously, this nurturing experience is a powerful vehicle for drawing children in and promoting strong attachment. But should children really love their robots?
ROBOTS AND THE PEOPLE WHO LOVE THEM: Holding on to Our Humanity in an Age of Social Robots by Eve Herold (January 9, 2024).
St. Martin’s Publishing Group
The problem, once again, is that a child can be lulled into thinking that she’s in an actual relationship, when a robot can’t possibly love her back. If adults have these vulnerabilities, what might such asymmetrical relationships do to the emotional development of a small child? Turkle notes that while we tend to ascribe a mind and emotions to a socially interactive robot, “simulated thinking may be thinking, but simulated feeling is never feeling, and simulated love is never love.”
Always a consideration is the fact that in the first few years of life, a child’s brain is undergoing rapid growth and development that will form the foundation of their lifelong emotional health. These formative experiences are literally shaping the child’s brain, their expectations, and their view of the world and their place in it. In Alone Together, Turkle asks: What are we saying to children about their importance to us when we’re willing to outsource their care to a robot? A child might be superficially entertained by the robot while his self-esteem is systematically undermined.
Research has emerged showing that there are clear downsides to child-robot relationships.
Still, in the case of robot nannies in the home, is active, playful engagement with a robot for a few hours a day any more harmful than several hours in front of a TV or with an iPad? Some, like Xiong, regard interacting with a robot as better than mere passive entertainment. iPal’s manufacturers say that their robot can’t replace parents or teachers and is best used by three- to eight-year-olds after school, while they wait for their parents to get off work. But as robots become ever-more sophisticated, they’re expected to perform more of the tasks of day-to-day care and to be much more emotionally advanced. There is no question children will form deep attachments to some of them. And research has emerged showing that there are clear downsides to child-robot relationships.
Some studies, performed by Turkle and fellow MIT colleague Cynthia Breazeal, have revealed a darker side to the child-robot bond. Turkle has reported extensively on these studies in The Washington Post and in her book Alone Together. Most children love robots, but some act out their inner bully on the hapless machines, hitting and kicking them and otherwise trying to hurt them. The trouble is that the robot can’t fight back, teaching children that they can bully and abuse without consequences. As in any other robot relationship, such harmful behavior could carry over into the child’s human relationships.
And, ironically, it turns out that communicative machines don’t actually teach kids good communication skills. It’s well known that parent-child communication in the first three years of life sets the stage for a very young child’s intellectual and academic success. Verbal back-and-forth with parents and care-givers is like fuel for a child’s growing brain. One article that examined several types of play and their effect on children’s communication skills, published in JAMA Pediatrics in 2015, showed that babies who played with electronic toys—like the popular robot dog Aibo—show a decrease in both the quantity and quality of their language skills.
Anna V. Sosa of the Child Speech and Language Lab at Northern Arizona University studied twenty-six ten- to sixteen- month-old infants to compare the growth of their language skills after they played with three types of toys: electronic toys like a baby laptop and talking farm; traditional toys like wooden puzzles and building blocks; and books read aloud by their parents. The play that produced the most growth in verbal ability was having books read to them by a caregiver, followed by play with traditional toys. Language gains after playing with electronic toys came dead last. This form of play involved the least use of adult words, the least conversational turntaking, and the least verbalizations from the children. While the study sample was small, it’s not hard to extrapolate that no electronic toy or even more abled robot could supply the intimate responsiveness of a parent reading stories to a child, explaining new words, answering the child’s questions, and modeling the kind of back- and-forth interaction that promotes empathy and reciprocity in relationships.
***
Most experts acknowledge that robots can be valuable educational tools. But they can’t make a child feel truly loved, validated, and valued. That’s the job of parents, and when parents abdicate this responsibility, it’s not only the child who misses out on one of life’s most profound experiences.
We really don’t know how the tech-savvy children of today will ultimately process their attachments to robots and whether they will be excessively predisposed to choosing robot companionship over that of humans. It’s possible their techno literacy will draw for them a bold line between real life and a quasi-imaginary history with a robot. But it will be decades before we see long-term studies culminating in sufficient data to help scientists, and the rest of us, to parse out the effects of a lifetime spent with robots.
This is an excerpt from ROBOTS AND THE PEOPLE WHO LOVE THEM: Holding on to Our Humanity in an Age of Social Robots by Eve Herold. The book will be published on January 9, 2024.
Story by Big Think
In rare cases, a woman’s heart can start to fail in the months before or after giving birth. The all-important muscle weakens as its chambers enlarge, reducing the amount of blood pumped with each beat. Peripartum cardiomyopathy can threaten the lives of both mother and child. Viral illness, nutritional deficiency, the bodily stress of pregnancy, or an abnormal immune response could all play a role, but the causes aren’t concretely known.
If there is a silver lining to peripartum cardiomyopathy, it’s that it is perhaps the most survivable form of heart failure. A remarkable 50% of women recover spontaneously. And there’s an even more remarkable explanation for that glowing statistic: The fetus‘ stem cells migrate to the heart and regenerate the beleaguered muscle. In essence, the developing or recently born child saves its mother’s life.
Saving mama
While this process has not been observed directly in humans, it has been witnessed in mice. In a 2015 study, researchers tracked stem cells from fetal mice as they traveled to mothers’ damaged cardiac cells and integrated themselves into hearts.
Evolutionarily, this function makes sense: It is in the fetus’ best interest that its mother remains healthy.
Scientists also have spotted cells from the fetus within the hearts of human mothers, as well as countless other places inside the body, including the skin, spleen, liver, brain, lung, kidney, thyroid, lymph nodes, salivary glands, gallbladder, and intestine. These cells essentially get everywhere. While most are eliminated by the immune system during pregnancy, some can persist for an incredibly long time — up to three decades after childbirth.
This integration of the fetus’ cells into the mother’s body has been given a name: fetal microchimerism. The process appears to start between the fourth and sixth week of gestation in humans. Scientists are actively trying to suss out its purpose. Fetal stem cells, which can differentiate into all sorts of specialized cells, appear to target areas of injury. So their role in healing seems apparent. Evolutionarily, this function makes sense: It is in the fetus’ best interest that its mother remains healthy.
Sending cells into the mother’s body may also prime her immune system to grow more tolerant of the developing fetus. Successful pregnancy requires that the immune system not see the fetus as an interloper and thus dispatch cells to attack it.
Fetal microchimerism
But fetal microchimerism might not be entirely beneficial. Greater concentrations of the cells have been associated with various autoimmune diseases such as lupus, Sjogren’s syndrome, and even multiple sclerosis. After all, they are foreign cells living in the mother’s body, so it’s possible that they might trigger subtle, yet constant inflammation. Fetal cells also have been linked to cancer, although it isn’t clear whether they abet or hinder the disease.
A team of Spanish scientists summarized the apparent give and take of fetal microchimerism in a 2022 review article. “On the one hand, fetal microchimerism could be a source of progenitor cells with a beneficial effect on the mother’s health by intervening in tissue repair, angiogenesis, or neurogenesis. On the other hand, fetal microchimerism might have a detrimental function by activating the immune response and contributing to autoimmune diseases,” they wrote.
Regardless of a fetus’ cells net effect, their existence alone is intriguing. In a paper published earlier this year, University of London biologist Francisco Úbeda and University of Western Ontario mathematical biologist Geoff Wild noted that these cells might very well persist within mothers for life.
“Therefore, throughout their reproductive lives, mothers accumulate fetal cells from each of their past pregnancies including those resulting in miscarriages. Furthermore, mothers inherit, from their own mothers, a pool of cells contributed by all fetuses carried by their mothers, often referred to as grandmaternal microchimerism.”
So every mother may carry within her literal pieces of her ancestors.