Black Participants Are Sorely Absent from Medical Research
After years of suffering from mysterious symptoms, my mother Janice Thomas finally found a doctor who correctly diagnosed her with two autoimmune diseases, Lupus and Sjogren's. Both diseases are more prevalent in the black population than in other races and are often misdiagnosed.
The National Institutes of Health has found that minorities make up less than 10 percent of trial participants.
Like many chronic health conditions, a lack of understanding persists about their causes, individual manifestations, and best treatment strategies.
On the search for relief from chronic pain, my mother started researching options and decided to participate in clinical trials as a way to gain much-needed insights. In return, she received discounted medical testing and has played an active role in finding answers for all.
"When my doctor told me I could get financial or medical benefits from participating in clinical trials for the same test I was already doing, I figured it would be an easy way to get some answers at little to no cost," she says.
As a person of color, her presence in clinical studies is rare. The National Institutes of Health has found that minorities make up less than 10 percent of trial participants.
Without trial participation that is reflective of the general population, pharmaceutical companies and medical professionals are left guessing how various drugs work across racial lines. For example, albuterol, a widely used asthma treatment, was found to have decreased effectiveness for black American and Puerto Rican children. Many high mortality conditions, like cancer, also show different outcomes based on race.
Over the last decade, the pervasive lack of representation has left communities of color demanding higher levels of involvement in the research process. However, no consensus yet exists on how best to achieve this.
But experts suggest that before we can improve black participation in medical studies, key misconceptions must be addressed, such as the false assumption that such patients are unwilling to participate because they distrust scientists.
Jill A. Fisher, a professor in the Center for Bioethics at the University of North Carolina at Chapel Hill, learned in one study that mistrust wasn't the main barrier for black Americans. "There is a lot of evidence that researchers' recruitment of black Americans is generally poorly done, with many black patients simply not asked," Fisher says. "Moreover, the underrepresentation of black Americans is primarily true for efficacy trials - those testing whether an investigational drug might therapeutically benefit patients with specific illnesses."
Without increased minority participation, research will not accurately reflect the diversity of the general population.
Dr. Joyce Balls-Berry, a psychiatric epidemiologist and health educator, agrees that black Americans are often overlooked in the process. One study she conducted found that "enrollment of minorities in clinical trials meant using a variety of culturally appropriate strategies to engage participants," she explained.
To overcome this hurdle, The National Black Church Initiative (NBCI), a faith-based organization made up of 34,000 churches and over 15.7 million African Americans, last year urged the Food and Drug Administration to mandate diversity in all clinical trials before approving a drug or device. However, the FDA declined to implement the mandate, declaring that they don't have the authority to regulate diversity in clinical trials.
"African Americans have not been successfully incorporated into the advancement of medicine and research technologies as legitimate and natural born citizens of this country," admonishes NBCI's president Rev. Anthony Evans.
His words conjure a reminder of the medical system's insidious history for people of color. The most infamous incident is the Tuskegee syphilis scandal, in which white government doctors perpetrated harmful experiments on hundreds of unsuspecting black men for forty years, until the research was shut down in the early 1970s.
Today, in the second decade of twenty-first century, the pernicious narrative that blacks are outsiders in science and medicine must be challenged, says Dr. Danielle N. Lee, assistant professor of biological sciences at Southern Illinois University. And having majority white participants in clinical trials only furthers the notion that "whiteness" is the default.
According to Lee, black individuals often see themselves disconnected from scientific and medical processes. "One of the critiques with science and medical research is that communities of color, and black communities in particular, regard ourselves as outsiders of science," Lee says. "We are othered."
Without increased minority participation, research will not accurately reflect the diversity of the general population.
"We are all human, but we are different, and yes, even different populations of people require modified medical responses," she points out.
Another obstacle is that many trials have health requirements that exclude black Americans, like not wanting individuals who have high blood pressure or a history of stroke. Considering that this group faces health disparities at a higher rate than whites, this eliminates eligibility for millions of potential participants.
One way to increase the diversity in sample participation without an FDA mandate is to include more black Americans in both volunteer and clinical roles during the research process to increase accountability in treatment, education, and advocacy.
"When more of us participate in clinical trials, we help build out the basic data sets that account for health disparities from the start, not after the fact," Lee says. She also suggests that researchers involve black patient representatives throughout the clinical trial process, from the study design to the interpretation of results.
"This allows for the black community to give insight on how to increase trial enrollment and help reduce stigma," she explains.
Thankfully, partnerships are popping up like the one between The Howard University's Cancer Center and Driver, a platform that connects cancer patients to treatment and trials. These sorts of targeted and culturally tailored efforts allow black patients to receive assistance from well-respected organizations.
Some observers suggest that the federal government and pharmaceutical industries must step up to address the gap.
However, some experts say that the black community should not be held solely responsible for solving a problem it did not cause. Instead, some observers suggest that the federal government and pharmaceutical industries must step up to address the gap.
According to Balls-Berry, socioeconomic barriers like transportation, time off work, and childcare related to trial participation must be removed. "These are real-world issues and yet many times researchers have not included these things in their budgets."
When asked to comment, a spokesperson for BIO, the world's largest biotech trade association, emailed the following statement:
"BIO believes that that our members' products and services should address the needs of a diverse population, and enhancing participation in clinical trials by a diverse patient population is a priority for BIO and our member companies. By investing in patient education to improve awareness of clinical trial opportunities, we can reduce disparities in clinical research to better reflect the country's changing demographics."
For my mother, the patient suffering from autoimmune disease, the need for broad participation in medical research is clear. "Without clinical trials, we would have less diagnosis and solutions to diseases," she says. "I think it's an underutilized resource."
After spaceflight record, NASA looks to protect astronauts on even longer trips
At T-minus six seconds, the main engines of the Atlantis Space Shuttle ignited, rattling its capsule “like a skyscraper in an earthquake,” according to astronaut Tom Jones, describing the 1988 launch. As the rocket lifted off and accelerated to three times the force of Earth's gravity, “It felt as if two of my friends were standing on my chest and wouldn’t get off.” But when Atlantis reached orbit, the main engines cut off, and the astronauts were suddenly weightless.
Since 1961, NASA has sent hundreds of astronauts into space while working to making their voyages safer and smoother. Yet, challenges remain. Weightlessness may look amusing when watched from Earth, but it has myriad effects on cognition, movement and other functions. When missions to space stretch to six months or longer, microgravity can impact astronauts’ health and performance, making it more difficult to operate their spacecraft.
Yesterday, NASA astronaut Frank Rubio returned to Earth after over one year, the longest single spaceflight for a U.S. astronaut. But this is just the start; longer and more complex missions into deep space loom ahead, from returning to the moon in 2025 to eventually sending humans to Mars. To ensure that these missions succeed, NASA is increasing efforts to study the biological effects and prevent harm.
The dangers of microgravity are real
A NASA report published in 2016 details a long list of incidents and near-misses caused – at least partly – by space-induced changes in astronauts’ vision and coordination. These issues make it harder to move with precision and to judge distance and velocity.
According to the report, in 1997, a resupply ship collided with the Mir space station, possibly because a crew member bumped into the commander during the final docking maneuver. This mishap caused significant damage to the space station.
Returns to Earth suffered from problems, too. The same report notes that touchdown speeds during the first 100 space shuttle landings were “outside acceptable limits. The fastest landing on record – 224 knots (258 miles) per hour – was linked to the commander’s momentary spatial disorientation.” Earlier, each of the six Apollo crews that landed on the moon had difficulty recognizing moon landmarks and estimating distances. For example, Apollo 15 landed in an unplanned area, ultimately straddling the rim of a five-foot deep crater on the moon, harming one of its engines.
Spaceflight causes unique stresses on astronauts’ brains and central nervous systems. NASA is working to reduce these harmful effects.
NASA
Space messes up your brain
In space, astronauts face the challenges of microgravity, ionizing radiation, social isolation, high workloads, altered circadian rhythms, monotony, confined living quarters and a high-risk environment. Among these issues, microgravity is one of the most consequential in terms of physiological changes. It changes the brain’s structure and its functioning, which can hurt astronauts’ performance.
The brain shifts upwards within the skull, displacing the cerebrospinal fluid, which reduces the brain’s cushioning. Essentially, the brain becomes crowded inside the skull like a pair of too-tight shoes.
That’s partly because of how being in space alters blood flow. On Earth, gravity pulls our blood and other internal fluids toward our feet, but our circulatory valves ensure that the fluids are evenly distributed throughout the body. In space, there’s not enough gravity to pull the fluids down, and they shift up, says Rachael D. Seidler, a physiologist specializing in spaceflight at the University of Florida and principal investigator on many space-related studies. The head swells and legs appear thinner, causing what astronauts call “puffy face chicken legs.”
“The brain changes at the structural and functional level,” says Steven Jillings, equilibrium and aerospace researcher at the University of Antwerp in Belgium. “The brain shifts upwards within the skull,” displacing the cerebrospinal fluid, which reduces the brain’s cushioning. Essentially, the brain becomes crowded inside the skull like a pair of too-tight shoes. Some of the displaced cerebrospinal fluid goes into cavities within the brain, called ventricles, enlarging them. “The remaining fluids pool near the chest and heart,” explains Jillings. After 12 consecutive months in space, one astronaut had a ventricle that was 25 percent larger than before the mission.
Some changes reverse themselves while others persist for a while. An example of a longer-lasting problem is spaceflight-induced neuro-ocular syndrome, which results in near-sightedness and pressure inside the skull. A study of approximately 300 astronauts shows near-sightedness affects about 60 percent of astronauts after long missions on the International Space Station (ISS) and more than 25 percent after spaceflights of only a few weeks.
Another long-term change could be the decreased ability of cerebrospinal fluid to clear waste products from the brain, Seidler says. That’s because compressing the brain also compresses its waste-removing glymphatic pathways, resulting in inflammation, vulnerability to injuries and worsening its overall health.
The effects of long space missions were best demonstrated on astronaut twins Scott and Mark Kelly. This NASA Twins Study showed multiple, perhaps permanent, changes in Scott after his 340-day mission aboard the ISS, compared to Mark, who remained on Earth. The differences included declines in Scott’s speed, accuracy and cognitive abilities that persisted longer than six months after returning to Earth in March 2016.
By the end of 2020, Scott’s cognitive abilities improved, but structural and physiological changes to his eyes still remained, he said in a BBC interview.
“It seems clear that the upward shift of the brain and compression of the surrounding tissues with ventricular expansion might not be a good thing,” Seidler says. “But, at this point, the long-term consequences to brain health and human performance are not really known.”
NASA astronaut Kate Rubins conducts a session for the Neuromapping investigation.
NASA
Staying sharp in space
To investigate how prolonged space travel affects the brain, NASA launched a new initiative called the Complement of Integrated Protocols for Human Exploration Research (CIPHER). “CIPHER investigates how long-duration spaceflight affects both brain structure and function,” says neurobehavioral scientist Mathias Basner at the University of Pennsylvania, a principal investigator for several NASA studies. “Through it, we can find out how the brain adapts to the spaceflight environment and how certain brain regions (behave) differently after – relative to before – the mission.”
To do this, he says, “Astronauts will perform NASA’s cognition test battery before, during and after six- to 12-month missions, and will also perform the same test battery in an MRI scanner before and after the mission. We have to make sure we better understand the functional consequences of spaceflight on the human brain before we can send humans safely to the moon and, especially, to Mars.”
As we go deeper into space, astronauts cognitive and physical functions will be even more important. “A trip to Mars will take about one year…and will introduce long communication delays,” Seidler says. “If you are on that mission and have a problem, it may take eight to 10 minutes for your message to reach mission control, and another eight to 10 minutes for the response to get back to you.” In an emergency situation, that may be too late for the response to matter.
“On a mission to Mars, astronauts will be exposed to stressors for unprecedented amounts of time,” Basner says. To counter them, NASA is considering the continuous use of artificial gravity during the journey, and Seidler is studying whether artificial gravity can reduce the harmful effects of microgravity. Some scientists are looking at precision brain stimulation as a way to improve memory and reduce anxiety due to prolonged exposure to radiation in space.
Other scientists are exploring how to protect neural stem cells (which create brain cells) from radiation damage, developing drugs to repair damaged brain cells and protect cells from radiation.
To boldly go where no astronauts have gone before, they must have optimal reflexes, vision and decision-making. In the era of deep space exploration, the brain—without a doubt—is the final frontier.
Additionally, NASA is scrutinizing each aspect of the mission, including astronaut exercise, nutrition and intellectual engagement. “We need to give astronauts meaningful work. We need to stimulate their sensory, cognitive and other systems appropriately,” Basner says, especially given their extreme confinement and isolation. The scientific experiments performed on the ISS – like studying how microgravity affects the ability of tissue to regenerate is a good example.
“We need to keep them engaged socially, too,” he continues. The ISS crew, for example, regularly broadcasts from space and answers prerecorded questions from students on Earth, and can engage with social media in real time. And, despite tight quarters, NASA is ensuring the crew capsule and living quarters on the moon or Mars include private space, which is critical for good mental health.
Exploring deep space builds on a foundation that began when astronauts first left the planet. With each mission, scientists learn more about spaceflight effects on astronauts’ bodies. NASA will be using these lessons to succeed with its plans to build science stations on the moon and, eventually, Mars.
“Through internally and externally led research, investigations implemented in space and in spaceflight simulations on Earth, we are striving to reduce the likelihood and potential impacts of neurostructural changes in future, extended spaceflight,” summarizes NASA scientist Alexandra Whitmire. To boldly go where no astronauts have gone before, they must have optimal reflexes, vision and decision-making. In the era of deep space exploration, the brain—without a doubt—is the final frontier.
A newly discovered brain cell may lead to better treatments for cognitive disorders
Swiss researchers have discovered a third type of brain cell that appears to be a hybrid of the two other primary types — and it could lead to new treatments for many brain disorders.
The challenge: Most of the cells in the brain are either neurons or glial cells. While neurons use electrical and chemical signals to send messages to one another across small gaps called synapses, glial cells exist to support and protect neurons.
Astrocytes are a type of glial cell found near synapses. This close proximity to the place where brain signals are sent and received has led researchers to suspect that astrocytes might play an active role in the transmission of information inside the brain — a.k.a. “neurotransmission” — but no one has been able to prove the theory.
A new brain cell: Researchers at the Wyss Center for Bio and Neuroengineering and the University of Lausanne believe they’ve definitively proven that some astrocytes do actively participate in neurotransmission, making them a sort of hybrid of neurons and glial cells.
According to the researchers, this third type of brain cell, which they call a “glutamatergic astrocyte,” could offer a way to treat Alzheimer’s, Parkinson’s, and other disorders of the nervous system.
“Its discovery opens up immense research prospects,” said study co-director Andrea Volterra.
The study: Neurotransmission starts with a neuron releasing a chemical called a neurotransmitter, so the first thing the researchers did in their study was look at whether astrocytes can release the main neurotransmitter used by neurons: glutamate.
By analyzing astrocytes taken from the brains of mice, they discovered that certain astrocytes in the brain’s hippocampus did include the “molecular machinery” needed to excrete glutamate. They found evidence of the same machinery when they looked at datasets of human glial cells.
Finally, to demonstrate that these hybrid cells are actually playing a role in brain signaling, the researchers suppressed their ability to secrete glutamate in the brains of mice. This caused the rodents to experience memory problems.
“Our next studies will explore the potential protective role of this type of cell against memory impairment in Alzheimer’s disease, as well as its role in other regions and pathologies than those explored here,” said Andrea Volterra, University of Lausanne.
But why? The researchers aren’t sure why the brain needs glutamatergic astrocytes when it already has neurons, but Volterra suspects the hybrid brain cells may help with the distribution of signals — a single astrocyte can be in contact with thousands of synapses.
“Often, we have neuronal information that needs to spread to larger ensembles, and neurons are not very good for the coordination of this,” researcher Ludovic Telley told New Scientist.
Looking ahead: More research is needed to see how the new brain cell functions in people, but the discovery that it plays a role in memory in mice suggests it might be a worthwhile target for Alzheimer’s disease treatments.
The researchers also found evidence during their study that the cell might play a role in brain circuits linked to seizures and voluntary movements, meaning it’s also a new lead in the hunt for better epilepsy and Parkinson’s treatments.
“Our next studies will explore the potential protective role of this type of cell against memory impairment in Alzheimer’s disease, as well as its role in other regions and pathologies than those explored here,” said Volterra.