Black Participants Are Sorely Absent from Medical Research
After years of suffering from mysterious symptoms, my mother Janice Thomas finally found a doctor who correctly diagnosed her with two autoimmune diseases, Lupus and Sjogren's. Both diseases are more prevalent in the black population than in other races and are often misdiagnosed.
The National Institutes of Health has found that minorities make up less than 10 percent of trial participants.
Like many chronic health conditions, a lack of understanding persists about their causes, individual manifestations, and best treatment strategies.
On the search for relief from chronic pain, my mother started researching options and decided to participate in clinical trials as a way to gain much-needed insights. In return, she received discounted medical testing and has played an active role in finding answers for all.
"When my doctor told me I could get financial or medical benefits from participating in clinical trials for the same test I was already doing, I figured it would be an easy way to get some answers at little to no cost," she says.
As a person of color, her presence in clinical studies is rare. The National Institutes of Health has found that minorities make up less than 10 percent of trial participants.
Without trial participation that is reflective of the general population, pharmaceutical companies and medical professionals are left guessing how various drugs work across racial lines. For example, albuterol, a widely used asthma treatment, was found to have decreased effectiveness for black American and Puerto Rican children. Many high mortality conditions, like cancer, also show different outcomes based on race.
Over the last decade, the pervasive lack of representation has left communities of color demanding higher levels of involvement in the research process. However, no consensus yet exists on how best to achieve this.
But experts suggest that before we can improve black participation in medical studies, key misconceptions must be addressed, such as the false assumption that such patients are unwilling to participate because they distrust scientists.
Jill A. Fisher, a professor in the Center for Bioethics at the University of North Carolina at Chapel Hill, learned in one study that mistrust wasn't the main barrier for black Americans. "There is a lot of evidence that researchers' recruitment of black Americans is generally poorly done, with many black patients simply not asked," Fisher says. "Moreover, the underrepresentation of black Americans is primarily true for efficacy trials - those testing whether an investigational drug might therapeutically benefit patients with specific illnesses."
Without increased minority participation, research will not accurately reflect the diversity of the general population.
Dr. Joyce Balls-Berry, a psychiatric epidemiologist and health educator, agrees that black Americans are often overlooked in the process. One study she conducted found that "enrollment of minorities in clinical trials meant using a variety of culturally appropriate strategies to engage participants," she explained.
To overcome this hurdle, The National Black Church Initiative (NBCI), a faith-based organization made up of 34,000 churches and over 15.7 million African Americans, last year urged the Food and Drug Administration to mandate diversity in all clinical trials before approving a drug or device. However, the FDA declined to implement the mandate, declaring that they don't have the authority to regulate diversity in clinical trials.
"African Americans have not been successfully incorporated into the advancement of medicine and research technologies as legitimate and natural born citizens of this country," admonishes NBCI's president Rev. Anthony Evans.
His words conjure a reminder of the medical system's insidious history for people of color. The most infamous incident is the Tuskegee syphilis scandal, in which white government doctors perpetrated harmful experiments on hundreds of unsuspecting black men for forty years, until the research was shut down in the early 1970s.
Today, in the second decade of twenty-first century, the pernicious narrative that blacks are outsiders in science and medicine must be challenged, says Dr. Danielle N. Lee, assistant professor of biological sciences at Southern Illinois University. And having majority white participants in clinical trials only furthers the notion that "whiteness" is the default.
According to Lee, black individuals often see themselves disconnected from scientific and medical processes. "One of the critiques with science and medical research is that communities of color, and black communities in particular, regard ourselves as outsiders of science," Lee says. "We are othered."
Without increased minority participation, research will not accurately reflect the diversity of the general population.
"We are all human, but we are different, and yes, even different populations of people require modified medical responses," she points out.
Another obstacle is that many trials have health requirements that exclude black Americans, like not wanting individuals who have high blood pressure or a history of stroke. Considering that this group faces health disparities at a higher rate than whites, this eliminates eligibility for millions of potential participants.
One way to increase the diversity in sample participation without an FDA mandate is to include more black Americans in both volunteer and clinical roles during the research process to increase accountability in treatment, education, and advocacy.
"When more of us participate in clinical trials, we help build out the basic data sets that account for health disparities from the start, not after the fact," Lee says. She also suggests that researchers involve black patient representatives throughout the clinical trial process, from the study design to the interpretation of results.
"This allows for the black community to give insight on how to increase trial enrollment and help reduce stigma," she explains.
Thankfully, partnerships are popping up like the one between The Howard University's Cancer Center and Driver, a platform that connects cancer patients to treatment and trials. These sorts of targeted and culturally tailored efforts allow black patients to receive assistance from well-respected organizations.
Some observers suggest that the federal government and pharmaceutical industries must step up to address the gap.
However, some experts say that the black community should not be held solely responsible for solving a problem it did not cause. Instead, some observers suggest that the federal government and pharmaceutical industries must step up to address the gap.
According to Balls-Berry, socioeconomic barriers like transportation, time off work, and childcare related to trial participation must be removed. "These are real-world issues and yet many times researchers have not included these things in their budgets."
When asked to comment, a spokesperson for BIO, the world's largest biotech trade association, emailed the following statement:
"BIO believes that that our members' products and services should address the needs of a diverse population, and enhancing participation in clinical trials by a diverse patient population is a priority for BIO and our member companies. By investing in patient education to improve awareness of clinical trial opportunities, we can reduce disparities in clinical research to better reflect the country's changing demographics."
For my mother, the patient suffering from autoimmune disease, the need for broad participation in medical research is clear. "Without clinical trials, we would have less diagnosis and solutions to diseases," she says. "I think it's an underutilized resource."
The future of non-hormonal birth control: Antibodies can stop sperm in their tracks
Unwanted pregnancy can now be added to the list of preventions that antibodies may be fighting in the near future. For decades, really since the 1980s, engineered monoclonal antibodies have been knocking out invading germs — preventing everything from cancer to COVID. Sperm, which have some of the same properties as germs, may be next.
Not only is there an unmet need on the market for alternatives to hormonal contraceptives, the genesis for the original research was personal for the then 22-year-old scientist who led it. Her findings were used to launch a company that could, within the decade, bring a new kind of contraceptive to the marketplace.
The genesis
It’s Suruchi Shrestha’s research — published in Science Translational Medicine in August 2021 and conducted as part of her dissertation while she was a graduate student at the University of North Carolina at Chapel Hill — that could change the future of contraception for many women worldwide. According to a Guttmacher Institute report, in the U.S. alone, there were 46 million sexually active women of reproductive age (15–49) who did not want to get pregnant in 2018. With the overturning of Roe v. Wade last year, Shrestha’s research could, indeed, be life changing for millions of American women and their families.
Now a scientist with NextVivo, Shrestha is not directly involved in the development of the contraceptive that is based on her research. But, back in 2016 when she was going through her own problems with hormonal contraceptives, she “was very personally invested” in her research project, Shrestha says. She was coping with a long list of negative effects from an implanted hormonal IUD. According to the Mayo Clinic, those can include severe pelvic pain, headaches, acute acne, breast tenderness, irregular bleeding and mood swings. After a year, she had the IUD removed, but it took another full year before all the side effects finally subsided; she also watched her sister suffer the “same tribulations” after trying a hormonal IUD, she says.
For contraceptive use either daily or monthly, Shrestha says, “You want the antibody to be very potent and also cheap.” That was her goal when she launched her study.
Shrestha unshelved antibody research that had been sitting idle for decades. It was in the late 80s that scientists in Japan first tried to develop anti-sperm antibodies for contraceptive use. But, 35 years ago, “Antibody production had not been streamlined as it is now, so antibodies were very expensive,” Shrestha explains. So, they shifted away from birth control, opting to focus on developing antibodies for vaccines.
Over the course of the last three decades, different teams of researchers have been working to make the antibody more effective, bringing the cost down, though it’s still expensive, according to Shrestha. For contraceptive use either daily or monthly, she says, “You want the antibody to be very potent and also cheap.” That was her goal when she launched her study.
The problem
The problem with contraceptives for women, Shrestha says, is that all but a few of them are hormone-based or have other negative side effects. In fact, some studies and reports show that millions of women risk unintended pregnancy because of medical contraindications with hormone-based contraceptives or to avoid the risks and side effects. While there are about a dozen contraceptive choices for women, there are two for men: the condom, considered 98% effective if used correctly, and vasectomy, 99% effective. Neither of these choices are hormone-based.
On the non-hormonal side for women, there is the diaphragm which is considered only 87 percent effective. It works better with the addition of spermicides — Nonoxynol-9, or N-9 — however, they are detergents; they not only kill the sperm, they also erode the vaginal epithelium. And, there’s the non-hormonal IUD which is 99% effective. However, the IUD needs to be inserted by a medical professional, and it has a number of negative side effects, including painful cramping at a higher frequency and extremely heavy or “abnormal” and unpredictable menstrual flows.
The hormonal version of the IUD, also considered 99% effective, is the one Shrestha used which caused her two years of pain. Of course, there’s the pill, which needs to be taken daily, and the birth control ring which is worn 24/7. Both cause side effects similar to the other hormonal contraceptives on the market. The ring is considered 93% effective mostly because of user error; the pill is considered 99% effective if taken correctly.
“That’s where we saw this opening or gap for women. We want a safe, non-hormonal contraceptive,” Shrestha says. Compounding the lack of good choices, is poor access to quality sex education and family planning information, according to the non-profit Urban Institute. A focus group survey suggested that the sex education women received “often lacked substance, leaving them feeling unprepared to make smart decisions about their sexual health and safety,” wrote the authors of the Urban Institute report. In fact, nearly half (45%, or 2.8 million) of the pregnancies that occur each year in the US are unintended, reports the Guttmacher Institute. Globally the numbers are similar. According to a new report by the United Nations, each year there are 121 million unintended pregnancies, worldwide.
The science
The early work on antibodies as a contraceptive had been inspired by women with infertility. It turns out that 9 to 12 percent of women who are treated for infertility have antibodies that develop naturally and work against sperm. Shrestha was encouraged that the antibodies were specific to the target — sperm — and therefore “very safe to use in women.” She aimed to make the antibodies more stable, more effective and less expensive so they could be more easily manufactured.
Since antibodies tend to stick to things that you tell them to stick to, the idea was, basically, to engineer antibodies to stick to sperm so they would stop swimming. Shrestha and her colleagues took the binding arm of an antibody that they’d isolated from an infertile woman. Then, targeting a unique surface antigen present on human sperm, they engineered a panel of antibodies with as many as six to 10 binding arms — “almost like tongs with prongs on the tongs, that bind the sperm,” explains Shrestha. “We decided to add those grabbers on top of it, behind it. So it went from having two prongs to almost 10. And the whole goal was to have so many arms binding the sperm that it clumps it” into a “dollop,” explains Shrestha, who earned a patent on her research.
Suruchi Shrestha works in the lab with a colleague. In 2016, her research on antibodies for birth control was inspired by her own experience with side effects from an implanted hormonal IUD.
UNC - Chapel Hill
The sperm stays right where it met the antibody, never reaching the egg for fertilization. Eventually, and naturally, “Our vaginal system will just flush it out,” Shrestha explains.
“She showed in her early studies that [she] definitely got the sperm immotile, so they didn't move. And that was a really promising start,” says Jasmine Edelstein, a scientist with an expertise in antibody engineering who was not involved in this research. Shrestha’s team at UNC reproduced the effect in the sheep, notes Edelstein, who works at the startup Be Biopharma. In fact, Shrestha’s anti-sperm antibodies that caused the sperm to agglutinate, or clump together, were 99.9% effective when delivered topically to the sheep’s reproductive tracts.
The future
Going forward, Shrestha thinks the ideal approach would be delivering the antibodies through a vaginal ring. “We want to use it at the source of the spark,” Shrestha says, as opposed to less direct methods, such as taking a pill. The ring would dissolve after one month, she explains, “and then you get another one.”
Engineered to have a long shelf life, the anti-sperm antibody ring could be purchased without a prescription, and women could insert it themselves, without a doctor. “That's our hope, so that it is accessible,” Shrestha says. “Anybody can just go and grab it and not worry about pregnancy or unintended pregnancy.”
Her patented research has been licensed by several biotech companies for clinical trials. A number of Shrestha’s co-authors, including her lab advisor, Sam Lai, have launched a company, Mucommune, to continue developing the contraceptives based on these antibodies.
And, results from a small clinical trial run by researchers at Boston University Chobanian & Avedisian School of Medicine show that a dissolvable vaginal film with antibodies was safe when tested on healthy women of reproductive age. That same group of researchers last year received a $7.2 million grant from the National Institute of Health for further research on monoclonal antibody-based contraceptives, which have also been shown to block transmission of viruses, like HIV.
“As the costs come down, this becomes a more realistic option potentially for women,” says Edelstein. “The impact could be tremendous.”
This article was first published by Leaps.org in December, 2022. It has been lightly edited with updates for timeliness.
Researchers probe extreme gene therapy for severe alcoholism
Story by Freethink
A single shot — a gene therapy injected into the brain — dramatically reduced alcohol consumption in monkeys that previously drank heavily. If the therapy is safe and effective in people, it might one day be a permanent treatment for alcoholism for people with no other options.
The challenge: Alcohol use disorder (AUD) means a person has trouble controlling their alcohol consumption, even when it is negatively affecting their life, job, or health.
In the U.S., more than 10 percent of people over the age of 12 are estimated to have AUD, and while medications, counseling, or sheer willpower can help some stop drinking, staying sober can be a huge struggle — an estimated 40-60 percent of people relapse at least once.
A team of U.S. researchers suspected that an in-development gene therapy for Parkinson’s disease might work as a dopamine-replenishing treatment for alcoholism, too.
According to the CDC, more than 140,000 Americans are dying each year from alcohol-related causes, and the rate of deaths has been rising for years, especially during the pandemic.
The idea: For occasional drinkers, alcohol causes the brain to release more dopamine, a chemical that makes you feel good. Chronic alcohol use, however, causes the brain to produce, and process, less dopamine, and this persistent dopamine deficit has been linked to alcohol relapse.
There is currently no way to reverse the changes in the brain brought about by AUD, but a team of U.S. researchers suspected that an in-development gene therapy for Parkinson’s disease might work as a dopamine-replenishing treatment for alcoholism, too.
To find out, they tested it in heavy-drinking monkeys — and the animals’ alcohol consumption dropped by 90% over the course of a year.
How it works: The treatment centers on the protein GDNF (“glial cell line-derived neurotrophic factor”), which supports the survival of certain neurons, including ones linked to dopamine.
For the new study, a harmless virus was used to deliver the gene that codes for GDNF into the brains of four monkeys that, when they had the option, drank heavily — the amount of ethanol-infused water they consumed would be equivalent to a person having nine drinks per day.
“We targeted the cell bodies that produce dopamine with this gene to increase dopamine synthesis, thereby replenishing or restoring what chronic drinking has taken away,” said co-lead researcher Kathleen Grant.
To serve as controls, another four heavy-drinking monkeys underwent the same procedure, but with a saline solution delivered instead of the gene therapy.
The results: All of the monkeys had their access to alcohol removed for two months following the surgery. When it was then reintroduced for four weeks, the heavy drinkers consumed 50 percent less compared to the control group.
When the researchers examined the monkeys’ brains at the end of the study, they were able to confirm that dopamine levels had been replenished in the treated animals, but remained low in the controls.
The researchers then took the alcohol away for another four weeks, before giving it back for four. They repeated this cycle for a year, and by the end of it, the treated monkeys’ consumption had fallen by more than 90 percent compared to the controls.
“Drinking went down to almost zero,” said Grant. “For months on end, these animals would choose to drink water and just avoid drinking alcohol altogether. They decreased their drinking to the point that it was so low we didn’t record a blood-alcohol level.”
When the researchers examined the monkeys’ brains at the end of the study, they were able to confirm that dopamine levels had been replenished in the treated animals, but remained low in the controls.
Looking ahead: Dopamine is involved in a lot more than addiction, so more research is needed to not only see if the results translate to people but whether the gene therapy leads to any unwanted changes to mood or behavior.
Because the therapy requires invasive brain surgery and is likely irreversible, it’s unlikely to ever become a common treatment for alcoholism — but it could one day be the only thing standing between people with severe AUD and death.
“[The treatment] would be most appropriate for people who have already shown that all our normal therapeutic approaches do not work for them,” said Grant. “They are likely to create severe harm or kill themselves or others due to their drinking.”
This article originally appeared on Freethink, home of the brightest minds and biggest ideas of all time.