Scientists and Religious Leaders Need to Be More Transparent
[Editor's Note: This essay is in response to our current Big Question series: "How can the religious and scientific communities work together to foster a culture that is equipped to face humanity's biggest challenges?"]
As a Jesuit Catholic priest, and a molecular geneticist, this question has been a fundamental part of my adult life. But first, let me address an issue that our American culture continues to struggle with: how do science and religion actually relate to each other? Is science about the "real" world, and religion just about individual or group beliefs about how the world should be?
Or are science and religion in direct competition with both trying to construct explanations of reality that are "better" or more real than the other's approach? These questions have generated much discussion among scientists, philosophers, and theologians.
The recent advances in our understanding of genetics show how combining the insights of science and religion can be beneficial.
First, we need to be clear that science and religion are two different ways human beings use to understand reality. Science focuses on observable, quantifiable, physical aspects of our universe, whereas, religion, while taking physical reality into consideration, also includes the immaterial, non-quantifiable, human experiences and concepts which relate to the meaning and purpose of existence. While scientific discoveries also often stimulate such profound reflections, these reflections are not technically a part of scientific methodology.
Second, though different in both method and focus, neither way of understanding reality produces a more "real" or accurate comprehension of our human existence. In fact, most often both science and religion add valuable insights into any particular situation, providing a more complete understanding of it as well as how it might be improved.
The recent advances in our understanding of genetics show how combining the insights of science and religion can be beneficial. For instance, the study of genetic differences among people around the world has shown us that the idea that we could accurately classify people as belonging to different races—e.g. African, Caucasian, Asian, etc.—is actually quite incorrect on a biological level. In fact, in many ways two people who appear to be of different races, perhaps African and Caucasian, could be more similar genetically than two people who appear to be of the same African race.
This scientific finding, then, challenges us to critically review the social categories some use to classify people as different from us, and, therefore, somehow of less worth to society. From this perspective, one could argue that this scientific insight synergizes well with some common fundamental religious beliefs regarding the fundamental equality all people have in their relationship to the Divine.
However, this synergy between science and religion is not what we encounter most often in the mass media or public policy debates. In part, this is due to the fact that science and religion working well together is not normally considered newsworthy. What does get attention is when science appears to conflict with religion, or, perhaps more accurately, when the scientific community conflicts with religious communities regarding how a particular scientific advance should be applied. These disagreements usually are not due to a conflict between scientific findings and religious beliefs, but rather between differing moral, social or political agendas.
One way that the two sides can work together is to prioritize honesty and accuracy in public debates instead of crafting informational campaigns to promote political advantage.
For example, genetically modified foods have been a source of controversy for the past several decades. While the various techniques used to create targeted genetic changes in plants—e.g. drought or pest resistance—are scientifically intricate and complex, explaining these techniques to the public is similar to explaining complex medical treatments to patients. Hence, the science alone is not the issue.
The controversy arises from the differing goals various stakeholders have for this technology. Obviously, companies employing this technology want it to be used around the world both for its significantly improved food production, and for improved revenue. Opponents, which have included religious communities, focus more on the social and cultural disruption this technology can create. Since a public debate between a complex technology on one side, and a complex social situation on the other side, is difficult to undertake well, the controversy has too often been reduced to sound bites such as "Frankenfoods." While such phrases may be an effective way to influence public opinion, ultimately, they work against sensible decision-making.
One way that the two sides can work together is to prioritize honesty and accuracy in public debates instead of crafting informational campaigns to promote political advantage. I recognize that presenting a thorough and honest explanation of an organization's position does not fit easily into our 24-hour-a-day-sound-bite system, but this is necessary to make the best decisions we can if we want to foster a healthier and happier world.
Climate change and human genome editing are good examples of this problem. These are both complex issues with impacts that extend well beyond just science and religious beliefs—including economics, societal disruption, and an exacerbation of social inequalities. To achieve solutions that result in significant benefits for the vast majority of people, we must work to create a knowledgeable public that is encouraged to consider the good of both one's own community as well as that of all others. This goal is actually one that both scientific and religious organizations claim to value and pursue.
The experts often fail to understand sufficiently what the public hopes, wants, and fears.
Unfortunately, both types of organizations often fall short because they focus only on informing and instructing instead of truly engaging the public in deliberation. Often both scientists and religious leaders believe that the public is not capable of sufficiently understanding the complexities of the issues, so they resort to assuming that the public should just do what the experts tell them.
However, there is significant research that demonstrates the ability of the general public to grasp complex issues in order to make sound decisions. Hence, it is the experts who often fail to understand how their messages are being received and what the public hopes, wants, and fears.
Overall, I remain sanguine about the likelihood of both religious and scientific organizations learning how to work better with each other, and together with the public. Working together for the good of all, we can integrate the insights and the desires of all stakeholders in order to face our challenges with well-informed reason and compassion for all, particularly those most in need.
[Ed. Note: Don't miss the other perspectives in this Big Question series, from a science scholar and a Rabbi/M.D.]
DNA- and RNA-based electronic implants may revolutionize healthcare
Implantable electronic devices can significantly improve patients’ quality of life. A pacemaker can encourage the heart to beat more regularly. A neural implant, usually placed at the back of the skull, can help brain function and encourage higher neural activity. Current research on neural implants finds them helpful to patients with Parkinson’s disease, vision loss, hearing loss, and other nerve damage problems. Several of these implants, such as Elon Musk’s Neuralink, have already been approved by the FDA for human use.
Yet, pacemakers, neural implants, and other such electronic devices are not without problems. They require constant electricity, limited through batteries that need replacements. They also cause scarring. “The problem with doing this with electronics is that scar tissue forms,” explains Kate Adamala, an assistant professor of cell biology at the University of Minnesota Twin Cities. “Anytime you have something hard interacting with something soft [like muscle, skin, or tissue], the soft thing will scar. That's why there are no long-term neural implants right now.” To overcome these challenges, scientists are turning to biocomputing processes that use organic materials like DNA and RNA. Other promised benefits include “diagnostics and possibly therapeutic action, operating as nanorobots in living organisms,” writes Evgeny Katz, a professor of bioelectronics at Clarkson University, in his book DNA- And RNA-Based Computing Systems.
While a computer gives these inputs in binary code or "bits," such as a 0 or 1, biocomputing uses DNA strands as inputs, whether double or single-stranded, and often uses fluorescent RNA as an output.
Adamala’s research focuses on developing such biocomputing systems using DNA, RNA, proteins, and lipids. Using these molecules in the biocomputing systems allows the latter to be biocompatible with the human body, resulting in a natural healing process. In a recent Nature Communications study, Adamala and her team created a new biocomputing platform called TRUMPET (Transcriptional RNA Universal Multi-Purpose GatE PlaTform) which acts like a DNA-powered computer chip. “These biological systems can heal if you design them correctly,” adds Adamala. “So you can imagine a computer that will eventually heal itself.”
The basics of biocomputing
Biocomputing and regular computing have many similarities. Like regular computing, biocomputing works by running information through a series of gates, usually logic gates. A logic gate works as a fork in the road for an electronic circuit. The input will travel one way or another, giving two different outputs. An example logic gate is the AND gate, which has two inputs (A and B) and two different results. If both A and B are 1, the AND gate output will be 1. If only A is 1 and B is 0, the output will be 0 and vice versa. If both A and B are 0, the result will be 0. While a computer gives these inputs in binary code or "bits," such as a 0 or 1, biocomputing uses DNA strands as inputs, whether double or single-stranded, and often uses fluorescent RNA as an output. In this case, the DNA enters the logic gate as a single or double strand.
If the DNA is double-stranded, the system “digests” the DNA or destroys it, which results in non-fluorescence or “0” output. Conversely, if the DNA is single-stranded, it won’t be digested and instead will be copied by several enzymes in the biocomputing system, resulting in fluorescent RNA or a “1” output. And the output for this type of binary system can be expanded beyond fluorescence or not. For example, a “1” output might be the production of the enzyme insulin, while a “0” may be that no insulin is produced. “This kind of synergy between biology and computation is the essence of biocomputing,” says Stephanie Forrest, a professor and the director of the Biodesign Center for Biocomputing, Security and Society at Arizona State University.
Biocomputing circles are made of DNA, RNA, proteins and even bacteria.
Evgeny Katz
The TRUMPET’s promise
Depending on whether the biocomputing system is placed directly inside a cell within the human body, or run in a test-tube, different environmental factors play a role. When an output is produced inside a cell, the cell's natural processes can amplify this output (for example, a specific protein or DNA strand), creating a solid signal. However, these cells can also be very leaky. “You want the cells to do the thing you ask them to do before they finish whatever their businesses, which is to grow, replicate, metabolize,” Adamala explains. “However, often the gate may be triggered without the right inputs, creating a false positive signal. So that's why natural logic gates are often leaky." While biocomputing outside a cell in a test tube can allow for tighter control over the logic gates, the outputs or signals cannot be amplified by a cell and are less potent.
TRUMPET, which is smaller than a cell, taps into both cellular and non-cellular biocomputing benefits. “At its core, it is a nonliving logic gate system,” Adamala states, “It's a DNA-based logic gate system. But because we use enzymes, and the readout is enzymatic [where an enzyme replicates the fluorescent RNA], we end up with signal amplification." This readout means that the output from the TRUMPET system, a fluorescent RNA strand, can be replicated by nearby enzymes in the platform, making the light signal stronger. "So it combines the best of both worlds,” Adamala adds.
These organic-based systems could detect cancer cells or low insulin levels inside a patient’s body.
The TRUMPET biocomputing process is relatively straightforward. “If the DNA [input] shows up as single-stranded, it will not be digested [by the logic gate], and you get this nice fluorescent output as the RNA is made from the single-stranded DNA, and that's a 1,” Adamala explains. "And if the DNA input is double-stranded, it gets digested by the enzymes in the logic gate, and there is no RNA created from the DNA, so there is no fluorescence, and the output is 0." On the story's leading image above, if the tube is "lit" with a purple color, that is a binary 1 signal for computing. If it's "off" it is a 0.
While still in research, TRUMPET and other biocomputing systems promise significant benefits to personalized healthcare and medicine. These organic-based systems could detect cancer cells or low insulin levels inside a patient’s body. The study’s lead author and graduate student Judee Sharon is already beginning to research TRUMPET's ability for earlier cancer diagnoses. Because the inputs for TRUMPET are single or double-stranded DNA, any mutated or cancerous DNA could theoretically be detected from the platform through the biocomputing process. Theoretically, devices like TRUMPET could be used to detect cancer and other diseases earlier.
Adamala sees TRUMPET not only as a detection system but also as a potential cancer drug delivery system. “Ideally, you would like the drug only to turn on when it senses the presence of a cancer cell. And that's how we use the logic gates, which work in response to inputs like cancerous DNA. Then the output can be the production of a small molecule or the release of a small molecule that can then go and kill what needs killing, in this case, a cancer cell. So we would like to develop applications that use this technology to control the logic gate response of a drug’s delivery to a cell.”
Although platforms like TRUMPET are making progress, a lot more work must be done before they can be used commercially. “The process of translating mechanisms and architecture from biology to computing and vice versa is still an art rather than a science,” says Forrest. “It requires deep computer science and biology knowledge,” she adds. “Some people have compared interdisciplinary science to fusion restaurants—not all combinations are successful, but when they are, the results are remarkable.”
In today’s podcast episode, Leaps.org Deputy Editor Lina Zeldovich speaks about the health and ecological benefits of farming crickets for human consumption with Bicky Nguyen, who joins Lina from Vietnam. Bicky and her business partner Nam Dang operate an insect farm named CricketOne. Motivated by the idea of sustainable and healthy protein production, they started their unconventional endeavor a few years ago, despite numerous naysayers who didn’t believe that humans would ever consider munching on bugs.
Yet, making creepy crawlers part of our diet offers many health and planetary advantages. Food production needs to match the rise in global population, estimated to reach 10 billion by 2050. One challenge is that some of our current practices are inefficient, polluting and wasteful. According to nonprofit EarthSave.org, it takes 2,500 gallons of water, 12 pounds of grain, 35 pounds of topsoil and the energy equivalent of one gallon of gasoline to produce one pound of feedlot beef, although exact statistics vary between sources.
Meanwhile, insects are easy to grow, high on protein and low on fat. When roasted with salt, they make crunchy snacks. When chopped up, they transform into delicious pâtes, says Bicky, who invents her own cricket recipes and serves them at industry and public events. Maybe that’s why some research predicts that edible insects market may grow to almost $10 billion by 2030. Tune in for a delectable chat on this alternative and sustainable protein.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Further reading:
More info on Bicky Nguyen
https://yseali.fulbright.edu.vn/en/faculty/bicky-n...
The environmental footprint of beef production
https://www.earthsave.org/environment.htm
https://www.watercalculator.org/news/articles/beef-king-big-water-footprints/
https://www.frontiersin.org/articles/10.3389/fsufs.2019.00005/full
https://ourworldindata.org/carbon-footprint-food-methane
Insect farming as a source of sustainable protein
https://www.insectgourmet.com/insect-farming-growing-bugs-for-protein/
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/insect-farming
Cricket flour is taking the world by storm
https://www.cricketflours.com/
https://talk-commerce.com/blog/what-brands-use-cricket-flour-and-why/
Lina Zeldovich has written about science, medicine and technology for Popular Science, Smithsonian, National Geographic, Scientific American, Reader’s Digest, the New York Times and other major national and international publications. A Columbia J-School alumna, she has won several awards for her stories, including the ASJA Crisis Coverage Award for Covid reporting, and has been a contributing editor at Nautilus Magazine. In 2021, Zeldovich released her first book, The Other Dark Matter, published by the University of Chicago Press, about the science and business of turning waste into wealth and health. You can find her on http://linazeldovich.com/ and @linazeldovich.