Can Genetic Testing Help Shed Light on the Autism Epidemic?
Autism cases are still on the rise, and scientists don't know why. In April, the Centers for Disease Control (CDC) reported that rates of autism had increased once again, now at an estimated 1 in 59 children up from 1 in 68 just two years ago. Rates have been climbing steadily since 2007 when the CDC initially estimated that 1 in 150 children were on the autism spectrum.
Some clinicians are concerned that the creeping expansion of autism is causing the diagnosis to lose its meaning.
The standard explanation for this increase has been the expansion of the definition of autism to include milder forms like Asperger's, as well as a heightened awareness of the condition that has improved screening efforts. For example, the most recent jump is attributed to children in minority communities being diagnosed who might have previously gone under the radar. In addition, more federally funded resources are available to children with autism than other types of developmental disorders, which may prompt families or physicians to push harder for a diagnosis.
Some clinicians are concerned that the creeping expansion of autism is causing the diagnosis to lose its meaning. William Graf, a pediatric neurologist at Connecticut Children's Medical Center, says that when a nurse tells him that a new patient has a history of autism, the term is no longer a useful description. "Even though I know this topic extremely well, I cannot picture the child anymore," he says. "Use the words mild, moderate, or severe. Just give me a couple more clues, because when you say autism today, I have no idea what people are talking about anymore."
Genetic testing has emerged as one potential way to remedy the overly broad label by narrowing down a heterogeneous diagnosis to a specific genetic disorder. According to Suma Shankar, a medical geneticist at the University of California, Davis, up to 60 percent of autism cases could be attributed to underlying genetic causes. Common examples include Fragile X Syndrome or Rett Syndrome—neurodevelopmental disorders that are caused by mutations in individual genes and are behaviorally classified as autism.
With more than 500 different mutations associated with autism, very few additional diagnoses provide meaningful information.
Having a genetic diagnosis in addition to an autism diagnosis can help families in several ways, says Shankar. Knowing the genetic origin can alert families to other potential health problems that are linked to the mutation, such as heart defects or problems with the immune system. It may also help clinicians provide more targeted behavioral therapies and could one day lead to the development of drug treatments for underlying neurochemical abnormalities. "It will pave the way to begin to tease out treatments," Shankar says.
When a doctor diagnoses a child as having a specific genetic condition, the label of autism is still kept because it is more well-known and gives the child access to more state-funded resources. Children can thus be diagnosed with multiple conditions: autism spectrum disorder and their specific gene mutation. However, with more than 500 different mutations associated with autism, very few additional diagnoses provide meaningful information. What's more, the presence or absence of a mutation doesn't necessarily indicate whether the child is on the mild or severe end of the autism spectrum.
Because of this, Graf doubts that genetic classifications are really that useful. He tells the story of a boy with epilepsy and severe intellectual disabilities who was diagnosed with autism as a young child. Years later, Graf ordered genetic testing for the boy and discovered that he had a mutation in the gene SYNGAP1. However, this knowledge didn't change the boy's autism status. "That diagnosis [SYNGAP1] turns out to be very specific for him, but it will never be a household name. Biologically it's good to know, and now it's all over his chart. But on a societal level he still needs this catch-all label [of autism]," Graf says.
"It gives some information, but to what degree does that change treatment or prognosis?"
Jennifer Singh, a sociologist at Georgia Tech who wrote the book Multiple Autisms: Spectrums of Advocacy and Genomic Science, agrees. "I don't know that the knowledge gained from just having a gene that's linked to autism," is that beneficial, she says. "It gives some information, but to what degree does that change treatment or prognosis? Because at the end of the day you have to address the issues that are at hand, whatever they might be."
As more children are diagnosed with autism, knowledge of the underlying genetic mutation causing the condition could help families better understand the diagnosis and anticipate their child's developmental trajectory. However, for the vast majority, an additional label provides little clarity or consolation.
Instead of spending money on genetic screens, Singh thinks the resources would be better used on additional services for people who don't have access to behavioral, speech, or occupational therapy. "Things that are really going to matter for this child in their future," she says.
Will the Pandemic Propel STEM Experts to Political Power?
If your car won't run, you head to a mechanic. If your faucet leaks, you contact a plumber. But what do you do if your politics are broken? You call a… lawyer.
"Scientists have been more engaged with politics over the past three years amid a consistent sidelining of science and expertise, and now the pandemic has crystalized things even more."
That's been the American way since the beginning. Thousands of members of the House and Senate have been attorneys, along with nearly two dozen U.S. presidents from John Adams to Abraham Lincoln to Barack Obama. But a band of STEM professionals is changing the equation. They're hoping anger over the coronavirus pandemic will turn their expertise into a political superpower that propels more of them into office.
"This could be a turning point, part of an acceleration of something that's already happening," said Nancy Goroff, a New York chemistry professor who's running for a House seat in Long Island and will apparently be the first female scientist with a Ph.D. in Congress. "Scientists have been more engaged with politics over the past three years amid a consistent sidelining of science and expertise, and now the pandemic has crystalized things even more."
Professionals in the science, technology, engineering and medicine (STEM) fields don't have an easy task, however. To succeed, they must find ways to engage with voters instead of their usual target audiences — colleagues, patients and students. And they'll need to beat back a long-standing political tradition that has made federal and state politics a domain of attorneys and businesspeople, not nurses and biologists.
In the 2017-2018 Congress, more members of Congress said they'd worked as radio talk show hosts (seven) and as car dealership owners (six) than scientists (three — a physicist, a microbiologist, and a chemist), according to a 2018 report from the Congressional Research Service. There were more bankers (18) than physicians (14), more management consultants (18) than engineers (11), and more former judges (15) than dentists (4), nurses (2), veterinarians (3), pharmacists (1) and psychologists (3) combined.
In 2018, a "STEM wave" brought nine members with STEM backgrounds into office. But those with initials like PhD, MD and RN after their names are still far outnumbered by Esq. and MBA types.
Why the gap? Astrophysicist Rush Holt Jr., who served from 1999-2015 as a House representative from New Jersey, thinks he knows. "I have this very strong belief, based on 16 years in Congress and a long, intense public life, that the problem is not with science or the scientists," said. "It has to do with the fact that the public just doesn't pay attention to science. It never occurs to them that they have any role in the matter."
But Holt, former chief executive of the American Association for the Advancement of Science, believes change is on the way. "It's likely that the pandemic will affect people's attitudes," former congressman Holt said, "and lead them to think that they need more scientific thinking in policy-making and legislating." Holt's father was a U.S. senator from West Virginia, so he grew up with a political education. But how can scientists and medical professionals succeed if they have no background in the art of wooing voters?
That's where an organization called 314 Action comes in. Named after the first three digits of pi, 314 Action declares itself to be the "pro-science resistance" and says it's trained more than 1,400 scientists to run for public office.
In 2018, 9 out of 13 House and Senate candidates endorsed by the group won their races. In 2020, 314 Action is endorsing 12 candidates for the House (including an engineer), four for the Senate (including an astronaut) and one for governor (a mathematician in Kansas). It expects to spend $10 million-$20 million to support campaigns this year.
"Physicians, scientists and engineers are problem-solvers," said Shaughnessy Naughton, a Pennsylvania chemist who founded 314 Action after an unsuccessful bid for Congress. "They're willing to dive into issues, and their skills would benefit policy decisions that extend way beyond their scientific fields of expertise."
Like many political organizations, 314 Action focuses on teaching potential candidate how to make it in politics, aiming to help them drop habits that fail to bridge the gap between scientists and civilians. "Their first impulse is not to tell a story," public speaking coach Chris Jahnke told the public radio show "Marketplace" in 2018. "They would rather start with a stat." In a training session, Jahnke aimed to teach them to do both effectively.
"It just comes down to being able to speak about general principles in regular English, and to always have the science intertwined with basic human values," said Rep. Kim Schrier, a Washington state pediatrician who won election to Congress in 2018.
She believes her experience on the job has helped her make connections with voters. In a chat with parents about vaccines for their child, for example, she knows not to directly jump into an arcane discussion of case-control studies.
The best alternative, she said, is to "talk about how hard it is to be a parent making these decisions, feeling scared and worried. Then say that you've looked at the data and the research, and point out that pediatricians would never do anything to hurt children because we want to do everything that is good for them. When you speak heart to heart, it gets across the message and the credibility of medicine and science."
The pandemic "will hopefully awaken people and trigger a change that puts science, medicine and public health on a pedestal where science is revered and not dismissed as elitist."
Communication skills will be especially important if the pandemic spurs more Americans to focus on politics and the records of incumbents in regard to matters like public health and climate change. Thousands of candidates will have to address the nation's coronavirus response, and a survey commissioned by 314 Action suggests that voters may be receptive to those with STEM backgrounds. The poll, of 1,002 likely voters in early April 2020, found that 41%-46% of those surveyed said they'd be "much more favorable" toward candidates who were doctors, nurses, scientists and public health professionals. Those numbers were the highest in the survey compared to just 9% for lawyers.
The pandemic "will hopefully awaken people and trigger a change that puts science, medicine and public health on a pedestal where science is revered and not dismissed as elitist," Dr. Schrier said. "It will come from a recognition that what's going to get us out of this bind are scientists, vaccine development and the hard work of the people in public health on the ground."
[This article was originally published on June 8th, 2020 as part of a standalone magazine called GOOD10: The Pandemic Issue. Produced as a partnership among LeapsMag, The Aspen Institute, and GOOD, the magazine is available for free online.]
The coronavirus pandemic exposed significant weaknesses in the country's food supply chain. Grocery store meat counters were bare. Transportation interruptions influenced supply. Finding beef, poultry, and pork at the store has been, in some places, as challenging as finding toilet paper.
In traditional agriculture models, it takes at least three months to raise chicken, six to nine months for pigs, and 18 months for cattle.
It wasn't a lack of supply -- millions of animals were in the pipeline.
"There's certainly enough food out there, but it can't get anywhere because of the way our system is set up," said Amy Rowat, an associate professor of integrative biology and physiology at UCLA. "Having a more self-contained, self-sufficient way to produce meat could make the supply chain more robust."
Cultured meat could be one way of making the meat supply chain more resilient despite disruptions due to pandemics such as COVID-19. But is the country ready to embrace lab-grown food?
According to a Good Food Institute study, GenZ is almost twice as likely to embrace meat alternatives for reasons related to social and environmental awareness, even prior to the pandemic. That's because this group wants food choices that reflect their values around food justice, equity, and animal welfare.
Largely, the interest in protein alternatives has been plant-based foods. However, factors directly related to COVID-19 may accelerate consumer interest in the scaling up of cell-grown products, according to Liz Specht, the associate director of science and technology at The Good Food Institute. The latter is a nonprofit organization that supports scientists, investors, and entrepreneurs working to develop food alternatives to conventional animal products.
While lab-grown food isn't ready yet to definitively crisis-proof the food supply chain, experts say it offers promise.
Matching Supply and Demand
Companies developing cell-grown meat claim it can take as few as two months to develop a cell into an edible product, according to Anthony Chow, CFA at Agronomics Limited, an investment company focused on meat alternatives. Tissue is taken from an animal and placed in a culture that contains nutrients and proteins the cells need to grow and expand. He cites a Good Food Institute report that claims a 2.5-millimeter sample can grow three and a half tons of meat in 40 days, allowing for exponential growth when needed.
In traditional agriculture models, it takes at least three months to raise chicken, six to nine months for pigs, and 18 months for cattle. To keep enough maturing animals in the pipeline, farms must plan the number of animals to raise months -- even years -- in advance. Lab-grown meat advocates say that because cultured meat supplies can be flexible, it theoretically allows for scaling up or down in significantly less time.
"Supply and demand has drastically changed in some way around the world and cultivated meat processing would be able to adapt much quicker than conventional farming," Chow said.
Scaling Up
Lab-grown meat may provide an eventual solution, but not in the immediate future, said Paul Mozdziak, a professor of physiology at North Carolina State University who researches animal cell culture techniques, transgenic animal production, and muscle biology.
"The challenge is in culture media," he said. "It's going to take some innovation to get the cells to grow at quantities that are going to be similar to what you can get from an animal. These are questions that everybody in the space is working on."
Chow says some of the most advanced cultured meat companies, such as BlueNal, anticipate introducing products to the market midway through next year. However, he thinks COVID-19 has slowed the process. Once introduced, they will be at a premium price, most likely available at restaurants before they hit grocery store shelves.
"I think in five years' time it will be in a different place," he said. "I don't think that this will have relevance for this pandemic, but certainly beyond that."
"Plant-based meats may be perceived as 'alternatives' to meat, whereas lab-grown meat is producing the same meat, just in a much more efficient manner, without the environmental implications."
Of course, all the technological solutions in the world won't solve the problem unless people are open-minded about embracing them. At least for now, a lab-grown burger or bluefin tuna might still be too strange for many people, especially in the U.S.
For instance, a 2019 article published by "Frontiers in Sustainable Food Systems" reflects results from a study of 3,030 consumers showing that 29 percent of U.S. customers, 59 percent of Chinese consumers, and 56 percent of Indian consumers were either 'very' or 'extremely likely' to try cultivated meat.
"Lab-grown meat is genuine meat, at the cellular level, and therefore will match conventional meat with regard to its nutritional content and overall sensory experience. It could be argued that plant-based meat will never be able to achieve this," says Laura Turner, who works with Chow at Agronomics Limited. "Plant-based meats may be perceived as 'alternatives' to meat, whereas lab-grown meat is producing the same meat, just in a much more efficient manner, without the environmental implications."
A Solution Beyond This Pandemic
The coronavirus has done more than raise awareness of the fragility of food supply chains. It has also been a wakeup call for consumers and policy makers that it is time to radically rethink our meat, Specht says. Those factors have elevated the profile of lab-grown meat.
"I think the economy is getting a little bit more steam and if I was an investor, I would be getting excited about it," adds Mozdziak.
Beyond crises, Mozdziak explains that as affluence continues to increase globally, meat consumption increases exponentially. Yet farm animals can only grow so quickly and traditional farming won't be able to keep up.
"Even Tyson is saying that by 2050, there's not going to be enough capacity in the animal meat space to meet demand," he notes. "If we don't look at some innovative technologies, how are we going to overcome that?"