“Disinfection Tunnels” Are Popping Up Around the World, Fueled By Misinformation and Fear
In an incident that sparked widespread outrage across India in late March, officials in the north Indian state of Uttar Pradesh sprayed hundreds of migrant workers, including women and children, with a chemical solution to sanitize them, in a misguided attempt to contain the spread of the novel coronavirus.
Since COVID-19 is a respiratory disorder, disinfecting a person's body or clothes cannot protect them from contracting the novel coronavirus, or help in containing the pathogen's spread.
Health officials reportedly doused the group with a diluted mixture of sodium hypochlorite – a bleaching agent harmful to humans, which led to complaints of skin rashes and eye irritation. The opposition termed the instance 'inhuman', compelling the state government to order an investigation into the mass 'chemical bath.'
"I don't think the officials thought this through," says Thomas Abraham, a professor with The University of Hong Kong, and a former consultant for the World Health Organisation (WHO) on risk communication. "Spraying people with bleach can prove to be harmful, and there is no guideline … that recommends it. This was some sort of a kneejerk reaction."
Although spraying individuals with chemicals led to a furor in the South Asian nation owing to its potential dangers, so-called "disinfection tunnels" have sprung up in crowded public places around the world, including malls, offices, airports, railway stations and markets. Touted as mass disinfectants, these tunnels spray individuals with chemical disinfectant liquids, mists or fumes through nozzles for a few seconds, purportedly to sanitize them -- though experts strongly condemn their use. The tunnels have appeared in at least 16 countries: India, Malaysia, Scotland, Albania, Argentina, Colombia, Singapore, China, Pakistan, France, Vietnam, Bosnia and Herzegovina, Chile, Mexico, Sri Lanka and Indonesia. Russian President Vladimir Putin even reportedly has his own tunnel at his residence.
While U.S. visitors to Mexico are "disinfected" through these sanitizing tunnels, there is no evidence that the mechanism is currently in use within the United States. However, the situation could rapidly change with international innovators like RD Pack, an Israeli start-up, pushing for their deployment. Many American and multinational companies like Stretch Structures, Guilio Barbieri and Inflatable Design Works are also producing these systems. As countries gradually ease lockdown restrictions, their demand is on the rise -- despite a stringent warning from the WHO against their potential health hazards.
"Spraying individuals with disinfectants (such as in a tunnel, cabinet, or chamber) is not recommended under any circumstances," the WHO warned in a report on May 15. "This could be physically and psychologically harmful and would not reduce an infected person's ability to spread the virus through droplets or contact. Moreover, spraying individuals with chlorine and other toxic chemicals could result in eye and skin irritation, bronchospasm due to inhalation, and gastrointestinal effects such as nausea and vomiting."
Disinfection tunnels largely spray a diluted mixture of sodium hypochlorite, a chlorine compound commonly known as bleach, often used to disinfect inanimate surfaces. Known for its hazardous properties, the WHO, in a separate advisory on COVID-19, warns that spraying bleach or any other disinfectant on individuals can prove to be poisonous if ingested, and that such substances should be used only to disinfect surfaces.
Considering the effect of sodium hypochlorite on mucous membranes, the European Centre for Disease Prevention and Control, an EU agency focussed on infectious diseases, recommends limited use of the chemical compound even when disinfecting surfaces – only 0.05 percent for cleaning surfaces, and 0.1 percent for toilets and bathroom sinks. The Indian health ministry also cautioned against spraying sodium hypochlorite recently, stating that its inhalation can lead to irritation of mucous membranes of the nose, throat, and respiratory tract.
In addition to the health hazards that such sterilizing systems pose, they have little utility, argues Indian virologist T. Jacob John. Since COVID-19 is a respiratory disorder, disinfecting a person's body or clothes cannot protect them from contracting the novel coronavirus, or help in containing the pathogen's spread.
"It's a respiratory infection, which means that you have the virus in your respiratory tract, and of course, that shows in your throat, therefore saliva, etc.," says John. "The virus does not survive outside the body for a long time, unless it is in freezing temperatures. Disinfecting a person's clothes or their body makes no sense."
Disinfection tunnels have limited, if any, impact on the main modes of coronavirus transmission, adds Craig Janes, director, School of Public Health and Health Systems at Canada's University of Waterloo. He explains that the nature of COVID-19 transmission is primarily from person-to-person, either directly, or via an object that is shared between two individuals. Measures like physical distancing and handwashing take care of these transmission risks.
"My view of these kinds of actions are that they are principally symbolic, indicating to a concerned population that 'something is being done,' to martial support for government or health system efforts," says Janes. "So perhaps a psychological benefit, but I'm not sure that this benefit would outweigh the risks."
"They may make people feel that their risk of infection has been reduced, and also that they do not have to worry about infecting others."
A recent report by Health Care Without Harm (HCWH), an international not-for-profit organization focused on sustainable health care around the world, states that disinfection tunnels have little evidence to demonstrate their efficacy or safety.
"If the goal is to reduce the spread of the virus by decontaminating the exterior clothing, shoes, and skin of the general public, there is no evidence that clothes are an important vector for transmission. If the goal is to attack the virus in the airways, what is the evidence that a 20-30 second external application is efficacious and safe?" the report questions. "The World Health Organization recommends more direct and effective ways to address hand hygiene, with interventions known to be effective."
If an infected person walks through a disinfection tunnel, he would still be infectious, as the chemicals will only disinfect the surfaces, says Gerald Keusch, a professor of medicine and international health at Boston University's Schools of Medicine and Public Health.
"While we know that viruses can be "disinfected" from surfaces and hands, disinfectants can be harmful to health if ingested or inhaled. The underlying principle of medicine is to do no harm, and we always measure benefit against risk when approving interventions. I don't know if this has been followed and assessed with respect to these devices," says Keusch. "It's a really bad idea."
Experts warn that such tunnels may also create a false sense of security, discouraging people from adopting best practice methods like handwashing, social distancing, avoiding crowded places, and using masks to combat the spread of COVID-19.
"They may make people feel that their risk of infection has been reduced, and also that they do not have to worry about infecting others," says Janes. "These are false assumptions, and may lead to increasing rather than reducing transmission."
DNA- and RNA-based electronic implants may revolutionize healthcare
Implantable electronic devices can significantly improve patients’ quality of life. A pacemaker can encourage the heart to beat more regularly. A neural implant, usually placed at the back of the skull, can help brain function and encourage higher neural activity. Current research on neural implants finds them helpful to patients with Parkinson’s disease, vision loss, hearing loss, and other nerve damage problems. Several of these implants, such as Elon Musk’s Neuralink, have already been approved by the FDA for human use.
Yet, pacemakers, neural implants, and other such electronic devices are not without problems. They require constant electricity, limited through batteries that need replacements. They also cause scarring. “The problem with doing this with electronics is that scar tissue forms,” explains Kate Adamala, an assistant professor of cell biology at the University of Minnesota Twin Cities. “Anytime you have something hard interacting with something soft [like muscle, skin, or tissue], the soft thing will scar. That's why there are no long-term neural implants right now.” To overcome these challenges, scientists are turning to biocomputing processes that use organic materials like DNA and RNA. Other promised benefits include “diagnostics and possibly therapeutic action, operating as nanorobots in living organisms,” writes Evgeny Katz, a professor of bioelectronics at Clarkson University, in his book DNA- And RNA-Based Computing Systems.
While a computer gives these inputs in binary code or "bits," such as a 0 or 1, biocomputing uses DNA strands as inputs, whether double or single-stranded, and often uses fluorescent RNA as an output.
Adamala’s research focuses on developing such biocomputing systems using DNA, RNA, proteins, and lipids. Using these molecules in the biocomputing systems allows the latter to be biocompatible with the human body, resulting in a natural healing process. In a recent Nature Communications study, Adamala and her team created a new biocomputing platform called TRUMPET (Transcriptional RNA Universal Multi-Purpose GatE PlaTform) which acts like a DNA-powered computer chip. “These biological systems can heal if you design them correctly,” adds Adamala. “So you can imagine a computer that will eventually heal itself.”
The basics of biocomputing
Biocomputing and regular computing have many similarities. Like regular computing, biocomputing works by running information through a series of gates, usually logic gates. A logic gate works as a fork in the road for an electronic circuit. The input will travel one way or another, giving two different outputs. An example logic gate is the AND gate, which has two inputs (A and B) and two different results. If both A and B are 1, the AND gate output will be 1. If only A is 1 and B is 0, the output will be 0 and vice versa. If both A and B are 0, the result will be 0. While a computer gives these inputs in binary code or "bits," such as a 0 or 1, biocomputing uses DNA strands as inputs, whether double or single-stranded, and often uses fluorescent RNA as an output. In this case, the DNA enters the logic gate as a single or double strand.
If the DNA is double-stranded, the system “digests” the DNA or destroys it, which results in non-fluorescence or “0” output. Conversely, if the DNA is single-stranded, it won’t be digested and instead will be copied by several enzymes in the biocomputing system, resulting in fluorescent RNA or a “1” output. And the output for this type of binary system can be expanded beyond fluorescence or not. For example, a “1” output might be the production of the enzyme insulin, while a “0” may be that no insulin is produced. “This kind of synergy between biology and computation is the essence of biocomputing,” says Stephanie Forrest, a professor and the director of the Biodesign Center for Biocomputing, Security and Society at Arizona State University.
Biocomputing circles are made of DNA, RNA, proteins and even bacteria.
Evgeny Katz
The TRUMPET’s promise
Depending on whether the biocomputing system is placed directly inside a cell within the human body, or run in a test-tube, different environmental factors play a role. When an output is produced inside a cell, the cell's natural processes can amplify this output (for example, a specific protein or DNA strand), creating a solid signal. However, these cells can also be very leaky. “You want the cells to do the thing you ask them to do before they finish whatever their businesses, which is to grow, replicate, metabolize,” Adamala explains. “However, often the gate may be triggered without the right inputs, creating a false positive signal. So that's why natural logic gates are often leaky." While biocomputing outside a cell in a test tube can allow for tighter control over the logic gates, the outputs or signals cannot be amplified by a cell and are less potent.
TRUMPET, which is smaller than a cell, taps into both cellular and non-cellular biocomputing benefits. “At its core, it is a nonliving logic gate system,” Adamala states, “It's a DNA-based logic gate system. But because we use enzymes, and the readout is enzymatic [where an enzyme replicates the fluorescent RNA], we end up with signal amplification." This readout means that the output from the TRUMPET system, a fluorescent RNA strand, can be replicated by nearby enzymes in the platform, making the light signal stronger. "So it combines the best of both worlds,” Adamala adds.
These organic-based systems could detect cancer cells or low insulin levels inside a patient’s body.
The TRUMPET biocomputing process is relatively straightforward. “If the DNA [input] shows up as single-stranded, it will not be digested [by the logic gate], and you get this nice fluorescent output as the RNA is made from the single-stranded DNA, and that's a 1,” Adamala explains. "And if the DNA input is double-stranded, it gets digested by the enzymes in the logic gate, and there is no RNA created from the DNA, so there is no fluorescence, and the output is 0." On the story's leading image above, if the tube is "lit" with a purple color, that is a binary 1 signal for computing. If it's "off" it is a 0.
While still in research, TRUMPET and other biocomputing systems promise significant benefits to personalized healthcare and medicine. These organic-based systems could detect cancer cells or low insulin levels inside a patient’s body. The study’s lead author and graduate student Judee Sharon is already beginning to research TRUMPET's ability for earlier cancer diagnoses. Because the inputs for TRUMPET are single or double-stranded DNA, any mutated or cancerous DNA could theoretically be detected from the platform through the biocomputing process. Theoretically, devices like TRUMPET could be used to detect cancer and other diseases earlier.
Adamala sees TRUMPET not only as a detection system but also as a potential cancer drug delivery system. “Ideally, you would like the drug only to turn on when it senses the presence of a cancer cell. And that's how we use the logic gates, which work in response to inputs like cancerous DNA. Then the output can be the production of a small molecule or the release of a small molecule that can then go and kill what needs killing, in this case, a cancer cell. So we would like to develop applications that use this technology to control the logic gate response of a drug’s delivery to a cell.”
Although platforms like TRUMPET are making progress, a lot more work must be done before they can be used commercially. “The process of translating mechanisms and architecture from biology to computing and vice versa is still an art rather than a science,” says Forrest. “It requires deep computer science and biology knowledge,” she adds. “Some people have compared interdisciplinary science to fusion restaurants—not all combinations are successful, but when they are, the results are remarkable.”
In today’s podcast episode, Leaps.org Deputy Editor Lina Zeldovich speaks about the health and ecological benefits of farming crickets for human consumption with Bicky Nguyen, who joins Lina from Vietnam. Bicky and her business partner Nam Dang operate an insect farm named CricketOne. Motivated by the idea of sustainable and healthy protein production, they started their unconventional endeavor a few years ago, despite numerous naysayers who didn’t believe that humans would ever consider munching on bugs.
Yet, making creepy crawlers part of our diet offers many health and planetary advantages. Food production needs to match the rise in global population, estimated to reach 10 billion by 2050. One challenge is that some of our current practices are inefficient, polluting and wasteful. According to nonprofit EarthSave.org, it takes 2,500 gallons of water, 12 pounds of grain, 35 pounds of topsoil and the energy equivalent of one gallon of gasoline to produce one pound of feedlot beef, although exact statistics vary between sources.
Meanwhile, insects are easy to grow, high on protein and low on fat. When roasted with salt, they make crunchy snacks. When chopped up, they transform into delicious pâtes, says Bicky, who invents her own cricket recipes and serves them at industry and public events. Maybe that’s why some research predicts that edible insects market may grow to almost $10 billion by 2030. Tune in for a delectable chat on this alternative and sustainable protein.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Further reading:
More info on Bicky Nguyen
https://yseali.fulbright.edu.vn/en/faculty/bicky-n...
The environmental footprint of beef production
https://www.earthsave.org/environment.htm
https://www.watercalculator.org/news/articles/beef-king-big-water-footprints/
https://www.frontiersin.org/articles/10.3389/fsufs.2019.00005/full
https://ourworldindata.org/carbon-footprint-food-methane
Insect farming as a source of sustainable protein
https://www.insectgourmet.com/insect-farming-growing-bugs-for-protein/
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/insect-farming
Cricket flour is taking the world by storm
https://www.cricketflours.com/
https://talk-commerce.com/blog/what-brands-use-cricket-flour-and-why/
Lina Zeldovich has written about science, medicine and technology for Popular Science, Smithsonian, National Geographic, Scientific American, Reader’s Digest, the New York Times and other major national and international publications. A Columbia J-School alumna, she has won several awards for her stories, including the ASJA Crisis Coverage Award for Covid reporting, and has been a contributing editor at Nautilus Magazine. In 2021, Zeldovich released her first book, The Other Dark Matter, published by the University of Chicago Press, about the science and business of turning waste into wealth and health. You can find her on http://linazeldovich.com/ and @linazeldovich.