Fixing a Baby’s Abnormal Genes in the Womb May Soon Be Possible
By now you have probably heard something about CRISPR, the simple and relatively inexpensive method of precisely editing the genomes of plants, animals, and humans.
The treatment of disease in fetuses, the liminal category of life between embryos and humans, poses the next frontier.
Through CRISPR and other methods of gene editing, scientists have produced crops to be more nutritious, better able to resist pests, and tolerate droughts; engineered animals ranging from fruit flies to monkeys to make them better suited for scientific study; and experimentally treated the HIV virus, Hepatitis B, and leukemia in human patients.
There are also currently FDA-approved trials to treat blindness, cancer, and sickle cell disease in humans using gene editing, and there is consensus that CRISPR's therapeutic applications will grow significantly in the coming years.
While the treatment of human disease through use of gene editing is not without its medical and ethical concerns, the avoidance of disease in embryos is far more fraught. Nonetheless, Nature reported in November that He Jiankui, a scientist in China, had edited twin embryos to disable a gene called CCR5 in hopes of avoiding transmission of HIV from their HIV-positive father.
Though there are questions about the effectiveness and necessity of this therapy, He reported that sequencing has proven his embryonic gene edits were successful and the twins were "born normal and healthy," although his claims have not been independently verified.
More recently, Denis Rebrikov, a Russian scientist, announced his plans to disable the same gene in embryos to be implanted in HIV-positive women later this year. Futuristic as it may seem, prenatal gene editing is already here.
The treatment of disease in fetuses, the liminal category of life between embryos and humans, poses the next frontier. Numerous conditions—some minor, some resulting in a lifetime of medical treatment, some incompatible with life outside of the womb—can be diagnosed through use of prenatal diagnostic testing. There is promising research suggesting doctors will soon be able to treat or mitigate at least some of them through use of fetal gene editing.
This research could soon present women carrying genetically anomalous fetuses a third option aside from termination or birthing a child who will likely face a challenging and uncertain medical future: Whether to undergo a fetal genetic intervention.
However, genetic intervention will open the door to a host of ethical considerations, particularly with respect to the relationship between pregnant women and prenatal genetic counselors. Current counselors theoretically provide objective information and answer questions rather than advise their pregnant client whether to continue with her pregnancy, despite the risks, or to have an abortion.
In practice, though, prenatal genetic counseling is most often directive, and the nature of the counseling pregnant women receive can depend on numerous factors, including their religious and cultural beliefs, their perceived ability to handle a complicated pregnancy and subsequent birth, and their financial status. Introducing the possibility of a fetal genetic intervention will exacerbate counselor reliance upon these considerations and in some cases lead to counseling that is even more directive.
Some women in the near future will face the choice of whether to abort, keep, or treat a genetically anomalous fetus.
Future counselors will have to figure out under what circumstances it is even appropriate to broach the subject. Should they only discuss therapies that are FDA-approved, or should they mention experimental treatments? What about interventions that are available in Europe or Asia, but banned in the United States? Or even in the best case of scenario of an FDA-approved treatment, should a counselor make reference to it if she knows for a fact that her client cannot possibly afford it?
Beyond the basic question of what information to share, counselors will have to confront the fact that the very notion of fixing or "editing" offspring will be repugnant to many women, and inherent in the suggestion is the stigmatization of individuals with disabilities. Prenatal genetic counselors will be on the forefront of debates surrounding which fetuses should remain as they are and which ones should be altered.
Despite these concerns, some women in the near future will face the choice of whether to abort, keep, or treat a genetically anomalous fetus in utero. Take, for example, a woman who learns during prenatal testing that her fetus has Angelman syndrome, a genetic disorder characterized by intellectual disability, speech impairment, loss of muscle control, epilepsy, and a small head. There is currently no human treatment for Angelman syndrome, which is caused by a loss of function in a single gene, UBE3A.
But scientists at the University of North Carolina have been able to treat Angelman syndrome in fetal mice by reactivating UBE3A through use of a single injection. The therapy has also proven effective in cultured human brain cells. This suggests that a woman might soon have to consider injecting her fetus's brain with a CRISPR concoction custom-designed to target UBE3A, rather than terminate her pregnancy or bring her fetus to term unaltered.
Assuming she receives the adequate information to make an informed choice, she too will face an ethical conundrum. There will be the inherent risks of injecting anything into a developing fetus's brain, including the possibility of infection, brain damage, and miscarriage. But there are also risks specific to gene editing, such as so-called off-target effects, the possibility of impacting genes other than the intended one. Such effects are highly unpredictable and can be difficult to detect. So too is it impossible to predict how altering UBE3A might lead to other genetic and epigenetic changes once the baby is born.
There are no easy answers to the many questions that will arise in this space.
A woman deciding how to act in this scenario must balance these risks against the potential benefits of the therapy, layered on top of her belief system, resources, and personal ethics. The calculus will be different for every woman, and even the same woman might change her mind from one pregnancy to the next based on the severity of the condition diagnosed and other available medical options.
Her genetic counselor, meanwhile, must be sensitive to all of these concerns in helping her make her decision, keeping up to date on the possible new treatments, and carefully choosing which information to disclose in striving to be neutral. There are no easy answers to the many questions that will arise in this space, but better to start thinking about them now, before it is too late.
A new injection is helping stave off RSV this season
In November 2021, Mickayla Wininger’s then one-month-old son, Malcolm, endured a terrifying bout with RSV, the respiratory syncytial (sin-SISH-uhl) virus—a common ailment that affects all age groups. Most people recover from mild, cold-like symptoms in a week or two, but RSV can be life-threatening in others, particularly infants.
Wininger, who lives in southern Illinois, was dressing Malcolm for bed when she noticed what seemed to be a minor irregularity with this breathing. She and her fiancé, Gavin McCullough, planned to take him to the hospital the next day. The matter became urgent when, in the morning, the boy’s breathing appeared to have stopped.
After they dialed 911, Malcolm started breathing again, but he ended up being hospitalized three times for RSV and defects in his heart. Eventually, he recovered fully from RSV, but “it was our worst nightmare coming to life,” Wininger recalled.
It’s a scenario that the federal government is taking steps to prevent. In July, the Food and Drug Administration approved a single-dose, long-acting injection to protect babies and toddlers. The injection, called Beyfortus, or nirsevimab, became available this October. It reduces the incidence of RSV in pre-term babies and other infants for their first RSV season. Children at highest risk for severe RSV are those who were born prematurely and have either chronic lung disease of prematurity or congenital heart disease. In those cases, RSV can progress to lower respiratory tract diseases such as pneumonia and bronchiolitis, or swelling of the lung’s small airway passages.
Each year, RSV is responsible for 2.1 million outpatient visits among children younger than five-years-old, 58,000 to 80,000 hospitalizations in this age group, and between 100 and 300 deaths, according to the Centers for Disease Control and Prevention. Transmitted through close contact with an infected person, the virus circulates on a seasonal basis in most regions of the country, typically emerging in the fall and peaking in the winter.
In August, however, the CDC issued a health advisory on a late-summer surge in severe cases of RSV among young children in Florida and Georgia. The agency predicts "increased RSV activity spreading north and west over the following two to three months.”
Infants are generally more susceptible to RSV than older people because their airways are very small, and their mechanisms to clear these passages are underdeveloped. RSV also causes mucus production and inflammation, which is more of a problem when the airway is smaller, said Jennifer Duchon, an associate professor of newborn medicine and pediatrics in the Icahn School of Medicine at Mount Sinai in New York.
In 2021 and 2022, RSV cases spiked, sending many to emergency departments. “RSV can cause serious disease in infants and some children and results in a large number of emergency department and physician office visits each year,” John Farley, director of the Office of Infectious Diseases in the FDA’s Center for Drug Evaluation and Research, said in a news release announcing the approval of the RSV drug. The decision “addresses the great need for products to help reduce the impact of RSV disease on children, families and the health care system.”
Sean O’Leary, chair of the committee on infectious diseases for the American Academy of Pediatrics, says that “we’ve never had a product like this for routine use in children, so this is very exciting news.” It is recommended for all kids under eight months old for their first RSV season. “I would encourage nirsevimab for all eligible children when it becomes available,” O’Leary said.
For those children at elevated risk of severe RSV and between the ages of 8 and 19 months, the CDC recommends one dose in their second RSV season.
The drug will be “really helpful to keep babies healthy and out of the hospital,” said O’Leary, a professor of pediatrics at the University of Colorado Anschutz Medical Campus/Children’s Hospital Colorado in Denver.
An antiviral drug called Synagis (palivizumab) has been an option to prevent serious RSV illness in high-risk infants since it was approved by the FDA in 1998. The injection must be given monthly during RSV season. However, its use is limited to “certain children considered at high risk for complications, does not help cure or treat children already suffering from serious RSV disease, and cannot prevent RSV infection,” according to the National Foundation for Infectious Diseases.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants.
Both nirsevimab and palivizumab are monoclonal antibodies that act against RSV. Monoclonal antibodies are lab-made proteins that mimic the immune system’s ability to fight off harmful pathogens such as viruses. A single intramuscular injection of nirsevimab preceding or during RSV season may provide protection.
The strategy with the new monoclonal antibody is “to extend protection to healthy infants who nonetheless are at risk because of their age, as well as infants with additional medical risk factors,” said Philippa Gordon, a pediatrician and infectious disease specialist in Brooklyn, New York, and medical adviser to Park Slope Parents, an online community support group.
No specific preventive measure is needed for older and healthier kids because they will develop active immunity, which is more durable. Meanwhile, older adults, who are also vulnerable to RSV, can receive one of two new vaccines. So can pregnant women, who pass on immunity to the fetus, Gordon said.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants, “nor is there any treatment other than giving oxygen or supportive care,” said Stanley Spinner, chief medical officer and vice president of Texas Children’s Pediatrics and Texas Children’s Urgent Care.
As with any virus, washing hands frequently and keeping infants and children away from sick people are the best defenses, Duchon said. This approach isn’t foolproof because viruses can run rampant in daycare centers, schools and parents’ workplaces, she added.
Mickayla Wininger, Malcolm’s mother, insists that family and friends wear masks, wash their hands and use hand sanitizer when they’re around her daughter and two sons. She doesn’t allow them to kiss or touch the children. Some people take it personally, but she would rather be safe than sorry.
Wininger recalls the severe anxiety caused by Malcolm's ordeal with RSV. After returning with her infant from his hospital stays, she was terrified to go to sleep. “My fiancé and I would trade shifts, so that someone was watching over our son 24 hours a day,” she said. “I was doing a night shift, so I would take caffeine pills to try and keep myself awake and would end up crashing early hours in the morning and wake up frantically thinking something happened to my son.”
Two years later, her anxiety has become more manageable, and Malcolm is doing well. “He is thriving now,” Wininger said. He recently had his second birthday and "is just the spunkiest boy you will ever meet. He looked death straight in the eyes and fought to be here today.”
Story by Big Think
For most of history, artificial intelligence (AI) has been relegated almost entirely to the realm of science fiction. Then, in late 2022, it burst into reality — seemingly out of nowhere — with the popular launch of ChatGPT, the generative AI chatbot that solves tricky problems, designs rockets, has deep conversations with users, and even aces the Bar exam.
But the truth is that before ChatGPT nabbed the public’s attention, AI was already here, and it was doing more important things than writing essays for lazy college students. Case in point: It was key to saving the lives of tens of millions of people.
AI-designed mRNA vaccines
As Dave Johnson, chief data and AI officer at Moderna, told MIT Technology Review‘s In Machines We Trust podcast in 2022, AI was integral to creating the company’s highly effective mRNA vaccine against COVID. Moderna and Pfizer/BioNTech’s mRNA vaccines collectively saved between 15 and 20 million lives, according to one estimate from 2022.
Johnson described how AI was hard at work at Moderna, well before COVID arose to infect billions. The pharmaceutical company focuses on finding mRNA therapies to fight off infectious disease, treat cancer, or thwart genetic illness, among other medical applications. Messenger RNA molecules are essentially molecular instructions for cells that tell them how to create specific proteins, which do everything from fighting infection, to catalyzing reactions, to relaying cellular messages.
Johnson and his team put AI and automated robots to work making lots of different mRNAs for scientists to experiment with. Moderna quickly went from making about 30 per month to more than one thousand. They then created AI algorithms to optimize mRNA to maximize protein production in the body — more bang for the biological buck.
For Johnson and his team’s next trick, they used AI to automate science, itself. Once Moderna’s scientists have an mRNA to experiment with, they do pre-clinical tests in the lab. They then pore over reams of data to see which mRNAs could progress to the next stage: animal trials. This process is long, repetitive, and soul-sucking — ill-suited to a creative scientist but great for a mindless AI algorithm. With scientists’ input, models were made to automate this tedious process.
“We don’t think about AI in the context of replacing humans,” says Dave Johnson, chief data and AI officer at Moderna. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
All these AI systems were in put in place over the past decade. Then COVID showed up. So when the genome sequence of the coronavirus was made public in January 2020, Moderna was off to the races pumping out and testing mRNAs that would tell cells how to manufacture the coronavirus’s spike protein so that the body’s immune system would recognize and destroy it. Within 42 days, the company had an mRNA vaccine ready to be tested in humans. It eventually went into hundreds of millions of arms.
Biotech harnesses the power of AI
Moderna is now turning its attention to other ailments that could be solved with mRNA, and the company is continuing to lean on AI. Scientists are still coming to Johnson with automation requests, which he happily obliges.
“We don’t think about AI in the context of replacing humans,” he told the Me, Myself, and AI podcast. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
Moderna, which was founded as a “digital biotech,” is undoubtedly the poster child of AI use in mRNA vaccines. Moderna recently signed a deal with IBM to use the company’s quantum computers as well as its proprietary generative AI, MoLFormer.
Moderna’s success is encouraging other companies to follow its example. In January, BioNTech, which partnered with Pfizer to make the other highly effective mRNA vaccine against COVID, acquired the company InstaDeep for $440 million to implement its machine learning AI across its mRNA medicine platform. And in May, Chinese technology giant Baidu announced an AI tool that designs super-optimized mRNA sequences in minutes. A nearly countless number of mRNA molecules can code for the same protein, but some are more stable and result in the production of more proteins. Baidu’s AI, called “LinearDesign,” finds these mRNAs. The company licensed the tool to French pharmaceutical company Sanofi.
Writing in the journal Accounts of Chemical Research in late 2021, Sebastian M. Castillo-Hair and Georg Seelig, computer engineers who focus on synthetic biology at the University of Washington, forecast that AI machine learning models will further accelerate the biotechnology research process, putting mRNA medicine into overdrive to the benefit of all.
This article originally appeared on Big Think, home of the brightest minds and biggest ideas of all time.