He Beat Lymphoma at 31, While Pioneering Breakthroughs in Cancer Research
It looked like only good things were ahead of Taylor Schreiber in 2010.
Schreiber had just finished his PhD in cancer biology and was preparing to return to medical school to complete his degree. He also had been married a year, and, like any young newlyweds up for adventure, he and his wife Nicki decided to go backpacking in the Costa Rican rainforest.
He was 31, and it was April Fool's Day—but no joke.
During the trip, he experienced a series of night sweats and didn't think too much about it. Schreiber hadn't been feeling right for a few weeks and assumed he had a respiratory infection. Besides, they were sleeping outdoors in a hot, tropical jungle.
But the night sweats continued even after he got home, leaving his mattress so soaked in the morning it was if a bucket of water had been dumped on him overnight. On instinct, he called one of his thesis advisors at the Sylvester Comprehensive Cancer Center in Florida and described his symptoms.
Dr. Joseph Rosenblatt didn't hesitate. "It sounds like Hodgkins. Come see me tomorrow," he said.
The next day, Schreiber was diagnosed with Stage 3b Hodgkin Lymphoma, which meant the disease was advanced. He was 31, and it was April Fool's Day—but no joke.
"I was scared to death," he recalls. "[Thank] goodness it's one of those cancers that is highly treatable. But being 31 years old and all of a sudden being told that you have a 30 percent of mortality within the next two years wasn't anything that I was relieved about."
For Schreiber, the diagnosis was a personal and professional game-changer. He couldn't work in the hospital as a medical student while undergoing chemotherapy, so he wound up remaining in his post-doctorate lab for another two years. The experience also solidified his decision to apply his scientific and medical knowledge to drug development.
Today, now 39, Schreiber is co-founder, director and chief scientific officer of Shattuck Labs, an immuno-oncology startup, and the developer of several important research breakthroughs in the field of immunotherapy.
After his diagnosis, he continued working full-time as a postdoc, while undergoing an aggressive chemotherapy regimen.
"These days, I look back on [my cancer] and think it was one of the luckiest things that ever happened to me," he says. "In medical school, you learn what it is to treat people and learn about the disease. But there is nothing like being a patient to teach you another side of medicine."
Medicine first called to Schreiber when his maternal grandfather was dying from lung cancer complications. Schreiber's uncle, a radiologist at the medical center where his grandfather was being treated, took him on a tour of his department and showed him images of the insides of his body on an ultrasound machine.
Schreiber was mesmerized. His mother was a teacher and his dad sold windows, so medicine was not something to which he had been routinely exposed.
"This weird device was like looking through jelly, and I thought that was the coolest thing ever," he says.
The experience led him to his first real job at the Catholic Medical Center in Manchester, NH, then to a semester-long internship program during his senior year in high school in Concord Hospital's radiology department.
"This was a great experience, but it also made clear that there was not any meaningful way to learn or contribute to medicine before you obtained a medical degree," says Schreiber, who enrolled in Bucknell College to study biology.
Bench science appealed to him, and he volunteered in Dr. Jing Zhou's nephrology department lab at the Harvard Institutes of Medicine. Under the mentorship of one of her post-docs, Lei Guo, he learned a range of critical techniques in molecular biology, leading to their discovery of a new gene related to human polycystic kidney disease and his first published paper.
Before his cancer diagnosis, Schreiber also volunteered in the lab of Dr. Robert "Doc" Sackstein, a world-renowned bone marrow transplant physician and biomedical researcher, and his interests began to shift towards immunology.
"He was just one of those dynamic people who has a real knack for teaching, first of all, and for inspiring people to want to learn more and ask hard questions and understand experimental medicine," Schreiber says.
It was there that he learned the scientific method and the importance of incorporating the right controls in experiments—a simple idea, but difficult to perform well. He also made what Sackstein calls "a startling discovery" about chemokines, which are signaling proteins that can activate an immune response.
As immune cells travel around our bodies looking for potential sources of infection or disease, they latch onto blood vessel walls and "sniff around" for specific chemical cues that indicate a source of infection. Schreiber and his colleagues designed a system that mimics the blood vessel wall, allowing them to define which chemical cues efficiently drive immune cell migration from the blood into tissues.
Schreiber received the best overall research award in 2008 from the National Student Research Foundation. But even as Schreiber's expertise about immunology grew, his own immune system was about to fight its hardest battle.
After his diagnosis, he continued working full-time as a postdoc in the lab of Eckhard Podack, then chair of the microbiology and immunology department at the University of Miami's Leonard M. Miller School of Medicine.
At the same time, Schreiber began an aggressive intravenous chemotherapy regimen of adriamycin, bleomycin, vincristine and dacarbazine, every two weeks, for 6 months. His wife Nicki, an obgyn, transferred her residency from Emory University in Atlanta to Miami so they could be together.
"It was a weird period. I mean, it made me feel good to keep doing things and not just lay idle," he said. "But by the second cycle of chemo, I was immunosuppressed and losing my hair and wore a face mask walking around the lab, which I was certainly self-conscious. But everyone around me didn't make me feel like an alien so I just went about my business."
The experience reinforced his desire to stay in immunology, especially after having taken the most toxic chemotherapies.
He stayed home the day after chemo when he felt his worst, then rested his body and timed exercise to give the drugs the best shot of targeting sick cells (a strategy, he says, that "could have been voodoo"). He also drank "an incredible" amount of fluids to help flush the toxins out of his system.
Side effects of the chemo, besides hair loss, included intense nausea, diarrhea, a loss of appetite, some severe lung toxicities that eventually resolved, and incredible fatigue.
"I've always been a runner, and I would even try to run while I was doing chemo," he said. "After I finished treatment, I would go literally 150 yards and just have to stop, and it took a lot of effort to work through it."
The experience reinforced his desire to stay in immunology, especially after having taken the most toxic chemotherapies.
"They worked, and I could tolerate them because I was young, but people who are older can't," Schreiber said. "The whole field of immunotherapy has really demonstrated that there are effective therapies out there that don't come with all of the same toxicities as the original chemo, so it was galvanizing to imagine contributing to finding some of those."
Schreiber went on to complete his MD and PhD degrees from the Sheila and David Fuente Program in Cancer Biology at the Miller School of Medicine and was nominated in 2011 as a Future Leader in Cancer Research by the American Association for Cancer Research. He also has numerous publications in the fields of tumor immunology and immunotherapy.
Sackstein, who was struck by Schreiber's enthusiasm and "boundless energy," predicts he will be a "major player in the world of therapeutics."
"The future for Taylor is amazing because he has the capacity to synthesize current knowledge and understand the gaps and then ask the right questions to establish new paradigms," said Sackstein, currently dean of the Herbert Wertheim College of Medicine at Florida International University. "It's a very unusual talent."
Since then, he has devoted his career to developing innovative techniques aimed at unleashing the immune system to attack cancer with less toxicity than chemotherapy and better clinical results—first, at a company called Heat Biologics and then at Pelican Therapeutics.
His primary work at Austin, Texas-based Shattuck is aimed at combining two functions in a single therapy for cancer and inflammatory diseases, blocking molecules that put a brake on the immune system (checkpoint inhibitors) while also stimulating the immune system's cancer-killing T cells.
The company has one drug in clinical testing as part of its Agonist Redirected Checkpoint (ARC) platform, which represents a new class of biological medicine. Two others are expected within the next year, with a pipeline of more than 250 drug candidates spanning cancer, inflammatory, and metabolic diseases.
Nine years after his own cancer diagnosis, Schreiber says it remains a huge part of his life, though his chances of a cancer recurrence today are about the same as his chances of getting newly diagnosed with any other cancer.
"I feel blessed to be in a position to help cancer patients live longer and could not imagine a more fulfilling way to spend my life," he says.
Scientists experiment with burning iron as a fuel source
Story by Freethink
Try burning an iron metal ingot and you’ll have to wait a long time — but grind it into a powder and it will readily burst into flames. That’s how sparklers work: metal dust burning in a beautiful display of light and heat. But could we burn iron for more than fun? Could this simple material become a cheap, clean, carbon-free fuel?
In new experiments — conducted on rockets, in microgravity — Canadian and Dutch researchers are looking at ways of boosting the efficiency of burning iron, with a view to turning this abundant material — the fourth most common in the Earth’s crust, about about 5% of its mass — into an alternative energy source.
Iron as a fuel
Iron is abundantly available and cheap. More importantly, the byproduct of burning iron is rust (iron oxide), a solid material that is easy to collect and recycle. Neither burning iron nor converting its oxide back produces any carbon in the process.
Iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again.
Iron has a high energy density: it requires almost the same volume as gasoline to produce the same amount of energy. However, iron has poor specific energy: it’s a lot heavier than gas to produce the same amount of energy. (Think of picking up a jug of gasoline, and then imagine trying to pick up a similar sized chunk of iron.) Therefore, its weight is prohibitive for many applications. Burning iron to run a car isn’t very practical if the iron fuel weighs as much as the car itself.
In its powdered form, however, iron offers more promise as a high-density energy carrier or storage system. Iron-burning furnaces could provide direct heat for industry, home heating, or to generate electricity.
Plus, iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again (as long as you’ve got a source of clean electricity or green hydrogen). When there’s excess electricity available from renewables like solar and wind, for example, rust could be converted back into iron powder, and then burned on demand to release that energy again.
However, these methods of recycling rust are very energy intensive and inefficient, currently, so improvements to the efficiency of burning iron itself may be crucial to making such a circular system viable.
The science of discrete burning
Powdered particles have a high surface area to volume ratio, which means it is easier to ignite them. This is true for metals as well.
Under the right circumstances, powdered iron can burn in a manner known as discrete burning. In its most ideal form, the flame completely consumes one particle before the heat radiating from it combusts other particles in its vicinity. By studying this process, researchers can better understand and model how iron combusts, allowing them to design better iron-burning furnaces.
Discrete burning is difficult to achieve on Earth. Perfect discrete burning requires a specific particle density and oxygen concentration. When the particles are too close and compacted, the fire jumps to neighboring particles before fully consuming a particle, resulting in a more chaotic and less controlled burn.
Presently, the rate at which powdered iron particles burn or how they release heat in different conditions is poorly understood. This hinders the development of technologies to efficiently utilize iron as a large-scale fuel.
Burning metal in microgravity
In April, the European Space Agency (ESA) launched a suborbital “sounding” rocket, carrying three experimental setups. As the rocket traced its parabolic trajectory through the atmosphere, the experiments got a few minutes in free fall, simulating microgravity.
One of the experiments on this mission studied how iron powder burns in the absence of gravity.
In microgravity, particles float in a more uniformly distributed cloud. This allows researchers to model the flow of iron particles and how a flame propagates through a cloud of iron particles in different oxygen concentrations.
Existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
Insights into how flames propagate through iron powder under different conditions could help design much more efficient iron-burning furnaces.
Clean and carbon-free energy on Earth
Various businesses are looking at ways to incorporate iron fuels into their processes. In particular, it could serve as a cleaner way to supply industrial heat by burning iron to heat water.
For example, Dutch brewery Swinkels Family Brewers, in collaboration with the Eindhoven University of Technology, switched to iron fuel as the heat source to power its brewing process, accounting for 15 million glasses of beer annually. Dutch startup RIFT is running proof-of-concept iron fuel power plants in Helmond and Arnhem.
As researchers continue to improve the efficiency of burning iron, its applicability will extend to other use cases as well. But is the infrastructure in place for this transition?
Often, the transition to new energy sources is slowed by the need to create new infrastructure to utilize them. Fortunately, this isn’t the case with switching from fossil fuels to iron. Since the ideal temperature to burn iron is similar to that for hydrocarbons, existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
This article originally appeared on Freethink, home of the brightest minds and biggest ideas of all time.
How to Use Thoughts to Control Computers with Dr. Tom Oxley
Tom Oxley is building what he calls a “natural highway into the brain” that lets people use their minds to control their phones and computers. The device, called the Stentrode, could improve the lives of hundreds of thousands of people living with spinal cord paralysis, ALS and other neurodegenerative diseases.
Leaps.org talked with Dr. Oxley for today’s podcast. A fascinating thing about the Stentrode is that it works very differently from other “brain computer interfaces” you may be familiar with, like Elon Musk’s Neuralink. Some BCIs are implanted by surgeons directly into a person’s brain, but the Stentrode is much less invasive. Dr. Oxley’s company, Synchron, opts for a “natural” approach, using stents in blood vessels to access the brain. This offers some major advantages to the handful of people who’ve already started to use the Stentrode.
The audio improves about 10 minutes into the episode. (There was a minor headset issue early on, but everything is audible throughout.) Dr. Oxley’s work creates game-changing opportunities for patients desperate for new options. His take on where we're headed with BCIs is must listening for anyone who cares about the future of health and technology.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
In our conversation, Dr. Oxley talks about “Bluetooth brain”; the critical role of AI in the present and future of BCIs; how BCIs compare to voice command technology; regulatory frameworks for revolutionary technologies; specific people with paralysis who’ve been able to regain some independence thanks to the Stentrode; what it means to be a neurointerventionist; how to scale BCIs for more people to use them; the risks of BCIs malfunctioning; organic implants; and how BCIs help us understand the brain, among other topics.
Dr. Oxley received his PhD in neuro engineering from the University of Melbourne in Australia. He is the founding CEO of Synchron and an associate professor and the head of the vascular bionics laboratory at the University of Melbourne. He’s also a clinical instructor in the Deepartment of Neurosurgery at Mount Sinai Hospital. Dr. Oxley has completed more than 1,600 endovascular neurosurgical procedures on patients, including people with aneurysms and strokes, and has authored over 100 peer reviewed articles.
Links:
Synchron website - https://synchron.com/
Assessment of Safety of a Fully Implanted Endovascular Brain-Computer Interface for Severe Paralysis in 4 Patients (paper co-authored by Tom Oxley) - https://jamanetwork.com/journals/jamaneurology/art...
More research related to Synchron's work - https://synchron.com/research
Tom Oxley on LinkedIn - https://www.linkedin.com/in/tomoxl
Tom Oxley on Twitter - https://twitter.com/tomoxl?lang=en
Tom Oxley TED - https://www.ted.com/talks/tom_oxley_a_brain_implant_that_turns_your_thoughts_into_text?language=en
Tom Oxley website - https://tomoxl.com/
Novel brain implant helps paralyzed woman speak using digital avatar - https://engineering.berkeley.edu/news/2023/08/novel-brain-implant-helps-paralyzed-woman-speak-using-a-digital-avatar/
Edward Chang lab - https://changlab.ucsf.edu/
BCIs convert brain activity into text at 62 words per minute - https://med.stanford.edu/neurosurgery/news/2023/he...
Leaps.org: The Mind-Blowing Promise of Neural Implants - https://leaps.org/the-mind-blowing-promise-of-neural-implants/
Tom Oxley