AI and you: Is the promise of personalized nutrition apps worth the hype?
As a type 2 diabetic, Michael Snyder has long been interested in how blood sugar levels vary from one person to another in response to the same food, and whether a more personalized approach to nutrition could help tackle the rapidly cascading levels of diabetes and obesity in much of the western world.
Eight years ago, Snyder, who directs the Center for Genomics and Personalized Medicine at Stanford University, decided to put his theories to the test. In the 2000s continuous glucose monitoring, or CGM, had begun to revolutionize the lives of diabetics, both type 1 and type 2. Using spherical sensors which sit on the upper arm or abdomen – with tiny wires that pierce the skin – the technology allowed patients to gain real-time updates on their blood sugar levels, transmitted directly to their phone.
It gave Snyder an idea for his research at Stanford. Applying the same technology to a group of apparently healthy people, and looking for ‘spikes’ or sudden surges in blood sugar known as hyperglycemia, could provide a means of observing how their bodies reacted to an array of foods.
“We discovered that different foods spike people differently,” he says. “Some people spike to pasta, others to bread, others to bananas, and so on. It’s very personalized and our feeling was that building programs around these devices could be extremely powerful for better managing people’s glucose.”
Unbeknown to Snyder at the time, thousands of miles away, a group of Israeli scientists at the Weizmann Institute of Science were doing exactly the same experiments. In 2015, they published a landmark paper which used CGM to track the blood sugar levels of 800 people over several days, showing that the biological response to identical foods can vary wildly. Like Snyder, they theorized that giving people a greater understanding of their own glucose responses, so they spend more time in the normal range, may reduce the prevalence of type 2 diabetes.
The commercial potential of such apps is clear, but the underlying science continues to generate intriguing findings.
“At the moment 33 percent of the U.S. population is pre-diabetic, and 70 percent of those pre-diabetics will become diabetic,” says Snyder. “Those numbers are going up, so it’s pretty clear we need to do something about it.”
Fast forward to 2022,and both teams have converted their ideas into subscription-based dietary apps which use artificial intelligence to offer data-informed nutritional and lifestyle recommendations. Snyder’s spinoff, January AI, combines CGM information with heart rate, sleep, and activity data to advise on foods to avoid and the best times to exercise. DayTwo–a start-up which utilizes the findings of Weizmann Institute of Science–obtains microbiome information by sequencing stool samples, and combines this with blood glucose data to rate ‘good’ and ‘bad’ foods for a particular person.
“CGMs can be used to devise personalized diets,” says Eran Elinav, an immunology professor and microbiota researcher at the Weizmann Institute of Science in addition to serving as a scientific consultant for DayTwo. “However, this process can be cumbersome. Therefore, in our lab we created an algorithm, based on data acquired from a big cohort of people, which can accurately predict post-meal glucose responses on a personal basis.”
The commercial potential of such apps is clear. DayTwo, who market their product to corporate employers and health insurers rather than individual consumers, recently raised $37 million in funding. But the underlying science continues to generate intriguing findings.
Last year, Elinav and colleagues published a study on 225 individuals with pre-diabetes which found that they achieved better blood sugar control when they followed a personalized diet based on DayTwo’s recommendations, compared to a Mediterranean diet. The journal Cell just released a new paper from Snyder’s group which shows that different types of fibre benefit people in different ways.
“The idea is you hear different fibres are good for you,” says Snyder. “But if you look at fibres they’re all over the map—it’s like saying all animals are the same. The responses are very individual. For a lot of people [a type of fibre called] arabinoxylan clearly reduced cholesterol while the fibre inulin had no effect. But in some people, it was the complete opposite.”
Eight years ago, Stanford's Michael Snyder began studying how continuous glucose monitors could be used by patients to gain real-time updates on their blood sugar levels, transmitted directly to their phone.
The Snyder Lab, Stanford Medicine
Because of studies like these, interest in precision nutrition approaches has exploded in recent years. In January, the National Institutes of Health announced that they are spending $170 million on a five year, multi-center initiative which aims to develop algorithms based on a whole range of data sources from blood sugar to sleep, exercise, stress, microbiome and even genomic information which can help predict which diets are most suitable for a particular individual.
“There's so many different factors which influence what you put into your mouth but also what happens to different types of nutrients and how that ultimately affects your health, which means you can’t have a one-size-fits-all set of nutritional guidelines for everyone,” says Bruce Y. Lee, professor of health policy and management at the City University of New York Graduate School of Public Health.
With the falling costs of genomic sequencing, other precision nutrition clinical trials are choosing to look at whether our genomes alone can yield key information about what our diets should look like, an emerging field of research known as nutrigenomics.
The ASPIRE-DNA clinical trial at Imperial College London is aiming to see whether particular genetic variants can be used to classify individuals into two groups, those who are more glucose sensitive to fat and those who are more sensitive to carbohydrates. By following a tailored diet based on these sensitivities, the trial aims to see whether it can prevent people with pre-diabetes from developing the disease.
But while much hope is riding on these trials, even precision nutrition advocates caution that the field remains in the very earliest of stages. Lars-Oliver Klotz, professor of nutrigenomics at Friedrich-Schiller-University in Jena, Germany, says that while the overall goal is to identify means of avoiding nutrition-related diseases, genomic data alone is unlikely to be sufficient to prevent obesity and type 2 diabetes.
“Genome data is rather simple to acquire these days as sequencing techniques have dramatically advanced in recent years,” he says. “However, the predictive value of just genome sequencing is too low in the case of obesity and prediabetes.”
Others say that while genomic data can yield useful information in terms of how different people metabolize different types of fat and specific nutrients such as B vitamins, there is a need for more research before it can be utilized in an algorithm for making dietary recommendations.
“I think it’s a little early,” says Eileen Gibney, a professor at University College Dublin. “We’ve identified a limited number of gene-nutrient interactions so far, but we need more randomized control trials of people with different genetic profiles on the same diet, to see whether they respond differently, and if that can be explained by their genetic differences.”
Some start-ups have already come unstuck for promising too much, or pushing recommendations which are not based on scientifically rigorous trials. The world of precision nutrition apps was dubbed a ‘Wild West’ by some commentators after the founders of uBiome – a start-up which offered nutritional recommendations based on information obtained from sequencing stool samples –were charged with fraud last year. The weight-loss app Noom, which was valued at $3.7 billion in May 2021, has been criticized on Twitter by a number of users who claimed that its recommendations have led to them developed eating disorders.
With precision nutrition apps marketing their technology at healthy individuals, question marks have also been raised about the value which can be gained through non-diabetics monitoring their blood sugar through CGM. While some small studies have found that wearing a CGM can make overweight or obese individuals more motivated to exercise, there is still a lack of conclusive evidence showing that this translates to improved health.
However, independent researchers remain intrigued by the technology, and say that the wealth of data generated through such apps could be used to help further stratify the different types of people who become at risk of developing type 2 diabetes.
“CGM not only enables a longer sampling time for capturing glucose levels, but will also capture lifestyle factors,” says Robert Wagner, a diabetes researcher at University Hospital Düsseldorf. “It is probable that it can be used to identify many clusters of prediabetic metabolism and predict the risk of diabetes and its complications, but maybe also specific cardiometabolic risk constellations. However, we still don’t know which forms of diabetes can be prevented by such approaches and how feasible and long-lasting such self-feedback dietary modifications are.”
Snyder himself has now been wearing a CGM for eight years, and he credits the insights it provides with helping him to manage his own diabetes. “My CGM still gives me novel insights into what foods and behaviors affect my glucose levels,” he says.
He is now looking to run clinical trials with his group at Stanford to see whether following a precision nutrition approach based on CGM and microbiome data, combined with other health information, can be used to reverse signs of pre-diabetes. If it proves successful, January AI may look to incorporate microbiome data in future.
“Ultimately, what I want to do is be able take people’s poop samples, maybe a blood draw, and say, ‘Alright, based on these parameters, this is what I think is going to spike you,’ and then have a CGM to test that out,” he says. “Getting very predictive about this, so right from the get go, you can have people better manage their health and then use the glucose monitor to help follow that.”
Cleaning has taken on a whole new meaning in Frank Mosco's household during the COVID-19 pandemic. There's a protocol for everything he and his two teenage daughters do.
Experts agree that over-disinfecting is better than inadequate disinfecting, especially during a pandemic.
"We wipe down every package that comes into the house and the items inside," says Mosco, a technologist and social justice activist in Hastings-on-Hudson, N.Y. "If it's a fruit or vegetable, I use vinegar and water, or water and soap. Then we throw out the boxes, clean up the table, and wash our hands." Only then do they put items away.
As the novel coronavirus continues to pose an invisible threat, parents of infants to adolescents are pondering how vigorously and frequently to clean and disinfect surfaces at home and apply hand sanitizer in public. They also fret over whether there can be too much of a good thing: Will making everything as seemingly germ-free as possible reduce immunity down the road?
Experts agree that over-disinfecting is better than inadequate disinfecting, especially during a pandemic. Every family should assess their particular risks. Factors to consider include pre-existing medical conditions, the number of people living in the same home, and whether anyone works in a hospital or other virus-prone environment, says Kari Debbink, assistant professor of biology at Bowie State University in Bowie, Maryland.
Constantly cleaning everything in sight isn't necessary, she explains, because coronavirus tends to spread mainly via immediate contact with respiratory droplets—catching it from surfaces is a less-likely scenario. The longer the virus stays on a surface, the less contagious it becomes.
Some parents worry that their children's growing bodies may become accustomed to an environment that is "too clean." Debbink, a virologist, offers a salient reminder: "The immune system comes into contact with many, many different antigens every day, and it is 'trained' from birth onwards to respond to pathogens. Doing a little more cleansing and disinfecting during the pandemic will not weaken the immune system."
Other experts agree. "There should be no negative outcome to properly washing your hands more frequently," says Stacey Schultz-Cherry, an infectious diseases specialist at St. Jude Children's Research Hospital in Memphis, Tennessee. "Even with enhanced disinfection, kids are still getting exposed to immune-boosting microbes from playing outside, having pets, etc."
"There's no reason why hand sanitizer would weaken anyone's immune system of any age."
Applying hand sanitizer consisting of at least 60 percent alcohol helps clean hands while outdoors, says Angela Rasmussen, associate research scientist and a virologist at Columbia University's Mailman School of Public Health in New York. "There's no reason why hand sanitizer would weaken anyone's immune system of any age," she adds, and recommends moisturizer so hands don't dry out from frequent use. Meanwhile, "cleaning and disinfecting at home also don't have an impact on antiviral immunity, in kids or adults."
With the coronavirus foremost in parents' minds, Patricia Garcia, a pediatric hospitalist, has fielded many questions about how thoroughly they should wipe, rub, scrub, or mop. As medical director of Connecticut Children's Healthy Homes Program in Hartford, which takes aim at toxins and other housing hazards, she reassures them with this mantra: "You're never going to get it perfectly sterilized, and that's okay."
To quell some of these concerns, in March the U.S. Environmental Protection Agency (EPA) released a list of products for household use. None of these products have been specifically tested against SARS-CoV-2, the novel coronavirus that causes COVID-19. But the agency expects these products to be effective because they have demonstrated efficacy against a different human coronavirus similar to SARS-CoV-2 or an even harder-to-kill virus.
Many products on the list contain isopropyl alcohol or hydrogen peroxide. "When using an EPA-registered disinfectant," the agency's website instructs, "follow the label directions for safe, effective use. Make sure to follow the contact time, which is the amount of time the surface should be visibly wet."
Bear in mind that not all cleaners actually disinfect, cautions Alan Woolf, a pediatrician at Boston Children's Hospital who directs its environmental health center and is a professor at Harvard Medical School. Some cleaners remove visible dirt, grease, and grime, but they don't kill viruses. Disinfectants by their nature inactivate both bacteria and viruses. "That's an important distinction," Woolf says.
Frequently touched surfaces—for instance, doorknobs, light switches, toilet-flushing levers, and countertops—should not only be cleaned, but also disinfected at least daily during a pandemic if someone in the household is sick. The objects one touches upon coming home are the ones most likely to become contaminated with viruses, experts say.
Before bringing items inside, "it might be good to clear off a counter space where they will be placed," says Debbink, the biology professor and virologist. "This way, they come into contact with as few items and surfaces as possible."
If space permits, another option would be to set aside nonperishable items. "I've heard of some families putting things in a 'mud room' and closing the door for 48 hours, some leaving things in their garage or car trunk," says Stephanie Holm, co-director of the Western States Pediatric Environmental Health Specialty Unit at the University of California, San Francisco. "Letting new purchases sit for 48 hours undisturbed would greatly reduce the number of viable viruses present."
Cleaning surfaces is recommended before disinfecting them. Holm suggests using unscented soap and microfiber cloths instead of paper towels, which can transmit bacteria and viruses from one area to another.
Soap has the power to eradicate viruses with at least 20 seconds of contact time. It attacks the coronavirus's protective coat, explains infectious diseases specialist Schultz-Cherry. "If you destroy the coat, the virus is no longer infectious. Influenza virus is also very sensitive to soap."
"The most important thing that parents should do for children's immune systems is make sure they are up to date on all their vaccines."
For cribs, toys, and other mouth-contact surfaces, sanitizing with soap and water, not disinfectants, is advisable, says pediatrician Woolf. Fresh fruits and vegetables also can be cleaned with soap, removing dirt and pesticide residue, he adds.
"Some parents are nervous about using disinfectant on toys, which is understandable, considering many toys end up in children's mouths, so soap and water can be an alternative," says pediatrician Garcia, who recommends using hot water.
While some toys can go in the washing machine and dryer or dishwasher, others need to be cleaned by hand, with dish soap or a delicate detergent, as indicated on their labels. But toys with electrical components cannot be submerged in water, in which case consulting the EPA's list of disinfectants may be a parent's best option, she says.
Labels on the back of cleaning and disinfecting products also contain specific instructions. Not allowing a liquid to sit on a surface for the recommended time results in exposure to chemicals without even accomplishing the intended purpose of disinfection. For most household bleach-containing agents, the advisable "dwell time" is 10 minutes. "Many people don't realize this," says Holm, the environmental health specialist who also trained as a physician.
Beware of combining any type of cleaners or disinfectants that aren't already premixed. Doing so can release harmful gases into the air, she cautions.
During the pandemic, Mosco and his daughters have been very conscientious about decontaminating whatever comes through their doors. Mosco says he doesn't believe the family is overusing cleaning and disinfecting products. Although he's fastidious, he says, "a completely sterile environment is not the goal."
His mother, who was a nurse, instilled in him that exposure to some bacteria is a good thing. In turn, he "always encouraged his kids to play with animals, and to have fun in sand and dirt, with plenty of sunlight to keep their immune systems strong."
Even though a vaccine for coronavirus currently doesn't exist, parents can take some comfort in the best weapon available today to protect kids from deadly pathogens: "The most important thing that parents should do for children's immune systems," says virologist Rasmussen, "is make sure they are up to date on all their vaccines."
In October 2006, Craig Mello received a strange phone call from Sweden at 4:30 a.m. The voice at the other end of the line told him to get dressed and that his life was about to change.
"We think this could be effective in [the early] phase, helping the body clear the virus and preventing progression to that severe hyperimmune response which occurs in some patients."
Shortly afterwards, he was informed that along with his colleague Andrew Fire, he had won the Nobel Prize in Physiology or Medicine.
Eight years earlier, biologists Fire and Mello had made a landmark discovery in the history of genetics. In a series of experiments conducted in worms, they had revealed an ancient evolutionary mechanism present in all animals that allows RNA – the structures within our cells that take genetic information from DNA and use it to make proteins – to selectively switch off genes.
At the time, scientists heralded the dawn of a new field of medical research utilizing this mechanism, known as RNA interference or RNAi, to tackle rare genetic diseases and deactivate viruses. Now, 14 years later, the pharmaceutical company Alnylam — which has pioneered the development of RNAi-based treatments over the past decade — is looking to use it to develop a groundbreaking drug for the virus that causes COVID-19.
"We can design small interfering RNAs to target regions of the viral genome and bind to them," said Akin Akinc, who manages several of Alnylam's drug development programs. "What we're learning about COVID-19 is that there's an early phase where there's lots of viral replication and a high viral load. We think this could be effective in that phase, helping the body clear the virus and preventing progression to that severe hyperimmune response which occurs in some patients."
Called ALN-COV, Alnylam's treatment hypothetically works by switching off a key gene in the virus, inhibiting its ability to replicate itself. In order to deliver it to the epithelial cells deep in the lung tissue, where the virus resides, patients will inhale a fine mist containing the RNAi molecules mixed in a saline solution, using a nebulizer.
But before human trials of the drug can begin, the company needs to convince regulators that it is both safe and effective in a series of preclinical trials. While early results appear promising - when mixed with the virus in a test tube, the drug displayed a 95 percent inhibition rate – experts are reserving judgment until it performs in clinical trials.
"If successful this could be a very important milestone in the development of RNAi therapies, but virus infections are very complicated and it can be hard to predict whether a given level of inhibition in cell culture will be sufficient to have a significant impact on the course of the infection," said Si-Ping Han, who researches RNAi therapeutics at California Institute of Technology and is not involved in the development of this drug.
So far, Alnylam has had success in using RNAi to treat rare genetic diseases. It currently has treatments licensed for Hereditary ATTR Amyloidosis and Acute Hepatic Porphyria. Another treatment, for Primary Hyperoxaluria Type 1, is currently under regulatory review. But its only previous attempt to use RNAi to tackle a respiratory infection was a failed effort to develop a drug for respiratory syncytial virus (RSV) almost a decade ago.
However, the technology has advanced considerably since then. "Back then, RNAi drugs had no chemical modifications whatsoever, so they were readily degraded by the body, and they could also result in unintended immune stimulation," said Akinc. "Since then, we've learned how to chemically modify our RNAi's to make them immunosilent and give them improved potency, stability, and duration of action."
"It would be a very important milestone in the development of RNAi therapies."
But one key challenge the company will face is the sheer speed at which viruses evolve, meaning they can become drug-resistant very quickly. Scientists predict that Alnylam will ultimately have to develop a series of RNAi drugs for the coronavirus that work together.
"There's been considerable interest in using RNAi to treat viral infections, as RNA therapies can be developed more rapidly than protein therapies like monoclonal antibodies, since one only needs to know the viral genome sequence to begin to design them," said David Schaffer, professor of bioengineering at University of California, Berkeley. "But viruses can evolve their sequences rapidly around single drugs so it is likely that a combinatorial RNAi therapy may be needed."
In the meantime, Alnylam is conducting further preclinical trials over the summer and fall, with the aim of launching testing in human volunteers by the end of this year -- an ambitious aim that would represent a breakneck pace for a drug development program.
If the approach does ultimately succeed, it would represent a major breakthrough for the field as a whole, potentially opening the door to a whole new wave of RNAi treatments for different lung infections and diseases.
"It would be a very important milestone in the development of RNAi therapies," said Han, the Caltech researcher. "It would be both the first time that an RNAi drug has been successfully used to treat a respiratory infection and as far as I know, the first time that one has been successful in treating any disease in the lungs. RNAi is a platform that can be reconfigured to hit different targets, and so once the first drug has been developed, we can expect a rapid flow of variants targeting other respiratory infections or other lung diseases."