AI and you: Is the promise of personalized nutrition apps worth the hype?
As a type 2 diabetic, Michael Snyder has long been interested in how blood sugar levels vary from one person to another in response to the same food, and whether a more personalized approach to nutrition could help tackle the rapidly cascading levels of diabetes and obesity in much of the western world.
Eight years ago, Snyder, who directs the Center for Genomics and Personalized Medicine at Stanford University, decided to put his theories to the test. In the 2000s continuous glucose monitoring, or CGM, had begun to revolutionize the lives of diabetics, both type 1 and type 2. Using spherical sensors which sit on the upper arm or abdomen – with tiny wires that pierce the skin – the technology allowed patients to gain real-time updates on their blood sugar levels, transmitted directly to their phone.
It gave Snyder an idea for his research at Stanford. Applying the same technology to a group of apparently healthy people, and looking for ‘spikes’ or sudden surges in blood sugar known as hyperglycemia, could provide a means of observing how their bodies reacted to an array of foods.
“We discovered that different foods spike people differently,” he says. “Some people spike to pasta, others to bread, others to bananas, and so on. It’s very personalized and our feeling was that building programs around these devices could be extremely powerful for better managing people’s glucose.”
Unbeknown to Snyder at the time, thousands of miles away, a group of Israeli scientists at the Weizmann Institute of Science were doing exactly the same experiments. In 2015, they published a landmark paper which used CGM to track the blood sugar levels of 800 people over several days, showing that the biological response to identical foods can vary wildly. Like Snyder, they theorized that giving people a greater understanding of their own glucose responses, so they spend more time in the normal range, may reduce the prevalence of type 2 diabetes.
The commercial potential of such apps is clear, but the underlying science continues to generate intriguing findings.
“At the moment 33 percent of the U.S. population is pre-diabetic, and 70 percent of those pre-diabetics will become diabetic,” says Snyder. “Those numbers are going up, so it’s pretty clear we need to do something about it.”
Fast forward to 2022,and both teams have converted their ideas into subscription-based dietary apps which use artificial intelligence to offer data-informed nutritional and lifestyle recommendations. Snyder’s spinoff, January AI, combines CGM information with heart rate, sleep, and activity data to advise on foods to avoid and the best times to exercise. DayTwo–a start-up which utilizes the findings of Weizmann Institute of Science–obtains microbiome information by sequencing stool samples, and combines this with blood glucose data to rate ‘good’ and ‘bad’ foods for a particular person.
“CGMs can be used to devise personalized diets,” says Eran Elinav, an immunology professor and microbiota researcher at the Weizmann Institute of Science in addition to serving as a scientific consultant for DayTwo. “However, this process can be cumbersome. Therefore, in our lab we created an algorithm, based on data acquired from a big cohort of people, which can accurately predict post-meal glucose responses on a personal basis.”
The commercial potential of such apps is clear. DayTwo, who market their product to corporate employers and health insurers rather than individual consumers, recently raised $37 million in funding. But the underlying science continues to generate intriguing findings.
Last year, Elinav and colleagues published a study on 225 individuals with pre-diabetes which found that they achieved better blood sugar control when they followed a personalized diet based on DayTwo’s recommendations, compared to a Mediterranean diet. The journal Cell just released a new paper from Snyder’s group which shows that different types of fibre benefit people in different ways.
“The idea is you hear different fibres are good for you,” says Snyder. “But if you look at fibres they’re all over the map—it’s like saying all animals are the same. The responses are very individual. For a lot of people [a type of fibre called] arabinoxylan clearly reduced cholesterol while the fibre inulin had no effect. But in some people, it was the complete opposite.”
Eight years ago, Stanford's Michael Snyder began studying how continuous glucose monitors could be used by patients to gain real-time updates on their blood sugar levels, transmitted directly to their phone.
The Snyder Lab, Stanford Medicine
Because of studies like these, interest in precision nutrition approaches has exploded in recent years. In January, the National Institutes of Health announced that they are spending $170 million on a five year, multi-center initiative which aims to develop algorithms based on a whole range of data sources from blood sugar to sleep, exercise, stress, microbiome and even genomic information which can help predict which diets are most suitable for a particular individual.
“There's so many different factors which influence what you put into your mouth but also what happens to different types of nutrients and how that ultimately affects your health, which means you can’t have a one-size-fits-all set of nutritional guidelines for everyone,” says Bruce Y. Lee, professor of health policy and management at the City University of New York Graduate School of Public Health.
With the falling costs of genomic sequencing, other precision nutrition clinical trials are choosing to look at whether our genomes alone can yield key information about what our diets should look like, an emerging field of research known as nutrigenomics.
The ASPIRE-DNA clinical trial at Imperial College London is aiming to see whether particular genetic variants can be used to classify individuals into two groups, those who are more glucose sensitive to fat and those who are more sensitive to carbohydrates. By following a tailored diet based on these sensitivities, the trial aims to see whether it can prevent people with pre-diabetes from developing the disease.
But while much hope is riding on these trials, even precision nutrition advocates caution that the field remains in the very earliest of stages. Lars-Oliver Klotz, professor of nutrigenomics at Friedrich-Schiller-University in Jena, Germany, says that while the overall goal is to identify means of avoiding nutrition-related diseases, genomic data alone is unlikely to be sufficient to prevent obesity and type 2 diabetes.
“Genome data is rather simple to acquire these days as sequencing techniques have dramatically advanced in recent years,” he says. “However, the predictive value of just genome sequencing is too low in the case of obesity and prediabetes.”
Others say that while genomic data can yield useful information in terms of how different people metabolize different types of fat and specific nutrients such as B vitamins, there is a need for more research before it can be utilized in an algorithm for making dietary recommendations.
“I think it’s a little early,” says Eileen Gibney, a professor at University College Dublin. “We’ve identified a limited number of gene-nutrient interactions so far, but we need more randomized control trials of people with different genetic profiles on the same diet, to see whether they respond differently, and if that can be explained by their genetic differences.”
Some start-ups have already come unstuck for promising too much, or pushing recommendations which are not based on scientifically rigorous trials. The world of precision nutrition apps was dubbed a ‘Wild West’ by some commentators after the founders of uBiome – a start-up which offered nutritional recommendations based on information obtained from sequencing stool samples –were charged with fraud last year. The weight-loss app Noom, which was valued at $3.7 billion in May 2021, has been criticized on Twitter by a number of users who claimed that its recommendations have led to them developed eating disorders.
With precision nutrition apps marketing their technology at healthy individuals, question marks have also been raised about the value which can be gained through non-diabetics monitoring their blood sugar through CGM. While some small studies have found that wearing a CGM can make overweight or obese individuals more motivated to exercise, there is still a lack of conclusive evidence showing that this translates to improved health.
However, independent researchers remain intrigued by the technology, and say that the wealth of data generated through such apps could be used to help further stratify the different types of people who become at risk of developing type 2 diabetes.
“CGM not only enables a longer sampling time for capturing glucose levels, but will also capture lifestyle factors,” says Robert Wagner, a diabetes researcher at University Hospital Düsseldorf. “It is probable that it can be used to identify many clusters of prediabetic metabolism and predict the risk of diabetes and its complications, but maybe also specific cardiometabolic risk constellations. However, we still don’t know which forms of diabetes can be prevented by such approaches and how feasible and long-lasting such self-feedback dietary modifications are.”
Snyder himself has now been wearing a CGM for eight years, and he credits the insights it provides with helping him to manage his own diabetes. “My CGM still gives me novel insights into what foods and behaviors affect my glucose levels,” he says.
He is now looking to run clinical trials with his group at Stanford to see whether following a precision nutrition approach based on CGM and microbiome data, combined with other health information, can be used to reverse signs of pre-diabetes. If it proves successful, January AI may look to incorporate microbiome data in future.
“Ultimately, what I want to do is be able take people’s poop samples, maybe a blood draw, and say, ‘Alright, based on these parameters, this is what I think is going to spike you,’ and then have a CGM to test that out,” he says. “Getting very predictive about this, so right from the get go, you can have people better manage their health and then use the glucose monitor to help follow that.”
“Virtual Biopsies” May Soon Make Some Invasive Tests Unnecessary
At his son's college graduation in 2017, Dan Chessin felt "terribly uncomfortable" sitting in the stadium. The bouts of pain persisted, and after months of monitoring, a urologist took biopsies of suspicious areas in his prostate.
This innovation may enhance diagnostic precision and promptness, but it also brings ethical concerns to the forefront.
"In my case, the biopsies came out cancerous," says Chessin, 60, who underwent robotic surgery for intermediate-grade prostate cancer at University Hospitals Cleveland Medical Center.
Although he needed a biopsy, as most patients today do, advances in radiologic technology may make such invasive measures unnecessary in the future. Researchers are developing better imaging techniques and algorithms—a form of computer science called artificial intelligence, in which machines learn and execute tasks that typically require human brain power.
This innovation may enhance diagnostic precision and promptness. But it also brings ethical concerns to the forefront of the conversation, highlighting the potential for invasion of privacy, unequal patient access, and less physician involvement in patient care.
A National Academy of Medicine Special Publication, released in December, emphasizes that setting industry-wide standards for use in patient care is essential to AI's responsible and transparent implementation as the industry grapples with voluminous quantities of data. The technology should be viewed as a tool to supplement decision-making by highly trained professionals, not to replace it.
MRI--a test that uses powerful magnets, radio waves, and a computer to take detailed images inside the body--has become highly accurate in detecting aggressive prostate cancer, but its reliability is more limited in identifying low and intermediate grades of malignancy. That's why Chessin opted to have his prostate removed rather than take the chance of missing anything more suspicious that could develop.
His urologist, Lee Ponsky, says AI's most significant impact is yet to come. He hopes University Hospitals Cleveland Medical Center's collaboration with research scientists at its academic affiliate, Case Western Reserve University, will lead to the invention of a virtual biopsy.
A National Cancer Institute five-year grant is funding the project, launched in 2017, to develop a combined MRI and computerized tool to support more accurate detection and grading of prostate cancer. Such a tool would be "the closest to a crystal ball that we can get," says Ponsky, professor and chairman of the Urology Institute.
In situations where AI has guided diagnostics, radiologists' interpretations of breast, lung, and prostate lesions have improved as much as 25 percent, says Anant Madabhushi, a biomedical engineer and director of the Center for Computational Imaging and Personalized Diagnostics at Case Western Reserve, who is collaborating with Ponsky. "AI is very nascent," Madabhushi says, estimating that fewer than 10 percent of niche academic medical centers have used it. "We are still optimizing and validating the AI and virtual biopsy technology."
In October, several North American and European professional organizations of radiologists, imaging informaticists, and medical physicists released a joint statement on the ethics of AI. "Ultimate responsibility and accountability for AI remains with its human designers and operators for the foreseeable future," reads the statement, published in the Journal of the American College of Radiology. "The radiology community should start now to develop codes of ethics and practice for AI that promote any use that helps patients and the common good and should block use of radiology data and algorithms for financial gain without those two attributes."
Overreliance on new technology also poses concern when humans "outsource the process to a machine."
The statement's leader author, radiologist J. Raymond Geis, says "there's no question" that machines equipped with artificial intelligence "can extract more information than two human eyes" by spotting very subtle patterns in pixels. Yet, such nuances are "only part of the bigger picture of taking care of a patient," says Geis, a senior scientist with the American College of Radiology's Data Science Institute. "We have to be able to combine that with knowledge of what those pixels mean."
Setting ethical standards is high on all physicians' radar because the intricacies of each patient's medical record are factored into the computer's algorithm, which, in turn, may be used to help interpret other patients' scans, says radiologist Frank Rybicki, vice chair of operations and quality at the University of Cincinnati's department of radiology. Although obtaining patients' informed consent in writing is currently necessary, ethical dilemmas arise if and when patients have a change of heart about the use of their private health information. It is likely that removing individual data may be possible for some algorithms but not others, Rybicki says.
The information is de-identified to protect patient privacy. Using it to advance research is akin to analyzing human tissue removed in surgical procedures with the goal of discovering new medicines to fight disease, says Maryellen Giger, a University of Chicago medical physicist who studies computer-aided diagnosis in cancers of the breast, lung, and prostate, as well as bone diseases. Physicians who become adept at using AI to augment their interpretation of imaging will be ahead of the curve, she says.
As with other new discoveries, patient access and equality come into play. While AI appears to "have potential to improve over human performance in certain contexts," an algorithm's design may result in greater accuracy for certain groups of patients, says Lucia M. Rafanelli, a political theorist at The George Washington University. This "could have a disproportionately bad impact on one segment of the population."
Overreliance on new technology also poses concern when humans "outsource the process to a machine." Over time, they may cease developing and refining the skills they used before the invention became available, said Chloe Bakalar, a visiting research collaborator at Princeton University's Center for Information Technology Policy.
"AI is a paradigm shift with magic power and great potential."
Striking the right balance in the rollout of the technology is key. Rushing to integrate AI in clinical practice may cause harm, whereas holding back too long could undermine its ability to be helpful. Proper governance becomes paramount. "AI is a paradigm shift with magic power and great potential," says Ge Wang, a biomedical imaging professor at Rensselaer Polytechnic Institute in Troy, New York. "It is only ethical to develop it proactively, validate it rigorously, regulate it systematically, and optimize it as time goes by in a healthy ecosystem."
How Emerging Technologies Can Help Us Fight the New Coronavirus
In nature, few species remain dominant for long. Any sizable population of similar individuals offers immense resources to whichever parasite can evade its defenses, spreading rapidly from one member to the next.
Which will prove greater: our defenses or our vulnerabilities?
Humans are one such dominant species. That wasn't always the case: our hunter-gatherer ancestors lived in groups too small and poorly connected to spread pathogens like wildfire. Our collective vulnerability to pandemics began with the dawn of cities and trade networks thousands of years ago. Roman cities were always demographic sinks, but never more so than when a pandemic agent swept through. The plague of Cyprian, the Antonine plague, the plague of Justinian – each is thought to have killed over ten million people, an appallingly high fraction of the total population of the empire.
With the advent of sanitation, hygiene, and quarantines, we developed our first non-immunological defenses to curtail the spread of plagues. With antibiotics, we began to turn the weapons of microbes against our microbial foes. Most potent of all, we use vaccines to train our immune systems to fight pathogens before we are even exposed. Edward Jenner's original vaccine alone is estimated to have saved half a billion lives.
It's been over a century since we suffered from a swift and deadly pandemic. Even the last deadly influenza of 1918 killed only a few percent of humanity – nothing so bad as any of the Roman plagues, let alone the Black Death of medieval times.
How much of our recent winning streak has been due to luck?
Much rides on that question, because the same factors that first made our ancestors vulnerable are now ubiquitous. Our cities are far larger than those of ancient times. They're inhabited by an ever-growing fraction of humanity, and are increasingly closely connected: we now routinely travel around the world in the course of a day. Despite urbanization, global population growth has increased contact with wild animals, creating more opportunities for zoonotic pathogens to jump species. Which will prove greater: our defenses or our vulnerabilities?
The tragic emergence of coronavirus 2019-nCoV in Wuhan may provide a test case. How devastating this virus will become is highly uncertain at the time of writing, but its rapid spread to many countries is deeply worrisome. That it seems to kill only the already infirm and spare the healthy is small comfort, and may counterintuitively assist its spread: it's easy to implement a quarantine when everyone infected becomes extremely ill, but if carriers may not exhibit symptoms as has been reported, it becomes exceedingly difficult to limit transmission. The virus, a distant relative of the more lethal SARS virus that killed 800 people in 2002 to 2003, has evolved to be transmitted between humans and spread to 18 countries in just six weeks.
Humanity's response has been faster than ever, if not fast enough. To its immense credit, China swiftly shared information, organized and built new treatment centers, closed schools, and established quarantines. The Coalition for Epidemic Preparedness Innovations, which was founded in 2017, quickly funded three different companies to develop three different varieties of vaccine: a standard protein vaccine, a DNA vaccine, and an RNA vaccine, with more planned. One of the agreements was signed after just four days of discussion, far faster than has ever been done before.
The new vaccine candidates will likely be ready for clinical trials by early summer, but even if successful, it will be additional months before the vaccine will be widely available. The delay may well be shorter than ever before thanks to advances in manufacturing and logistics, but a delay it will be.
The 1918 influenza virus killed more than half of its victims in the United Kingdom over just three months.
If we faced a truly nasty virus, something that spreads like pandemic influenza – let alone measles – yet with the higher fatality rate of, say, H7N9 avian influenza, the situation would be grim. We are profoundly unprepared, on many different levels.
So what would it take to provide us with a robust defense against pandemics?
Minimize the attack surface: 2019-nCoV jumped from an animal, most probably a bat, to humans. China has now banned the wildlife trade in response to the epidemic. Keeping it banned would be prudent, but won't be possible in all nations. Still, there are other methods of protection. Influenza viruses commonly jump from birds to pigs to humans; the new coronavirus may have similarly passed through a livestock animal. Thanks to CRISPR, we can now edit the genomes of most livestock. If we made them immune to known viruses, and introduced those engineered traits to domesticated animals everywhere, we would create a firewall in those intermediate hosts. We might even consider heritably immunizing the wild organisms most likely to serve as reservoirs of disease.
None of these defenses will be cheap, but they'll be worth every penny.
Rapid diagnostics: We need a reliable method of detection costing just pennies to be available worldwide inside of a week of discovering a new virus. This may eventually be possible thanks to a technology called SHERLOCK, which is based on a CRISPR system more commonly used for precision genome editing. Instead of using CRISPR to find and edit a particular genome sequence in a cell, SHERLOCK programs it to search for a desired target and initiate an easily detected chain reaction upon discovery. The technology is capable of fantastic sensitivity: with an attomolar (10-18) detection limit, it senses single molecules of a unique DNA or RNA fingerprint, and the components can be freeze-dried onto paper strips.
Better preparations: China acted swiftly to curtail the spread of the Wuhan virus with traditional public health measures, but not everything went as smoothly as it might have. Most cities and nations have never conducted a pandemic preparedness drill. Best give people a chance to practice keeping the city barely functional while minimizing potential exposure events before facing the real thing.
Faster vaccines: Three months to clinical trials is too long. We need a robust vaccine discovery and production system that can generate six candidates within a week of the pathogen's identification, manufacture a million doses the week after, and scale up to a hundred million inside of a month. That may be possible for novel DNA and RNA-based vaccines, and indeed anything that can be delivered using a standardized gene therapy vector. For example, instead of teaching each person's immune system to evolve protective antibodies by showing it pieces of the virus, we can program cells to directly produce known antibodies via gene therapy. Those antibodies could be discovered by sifting existing diverse libraries of hundreds of millions of candidates, computationally designed from scratch, evolved using synthetic laboratory ecosystems, or even harvested from the first patients to report symptoms. Such a vaccine might be discovered and produced fast enough at scale to halt almost any natural pandemic.
Robust production and delivery: Our defenses must not be vulnerable to the social and economic disruptions caused by a pandemic. Unfortunately, our economy selects for speed and efficiency at the expense of robustness. Just-in-time supply chains that wing their way around the world require every node to be intact. If workers aren't on the job producing a critical component, the whole chain breaks until a substitute can be found. A truly nasty pandemic would disrupt economies all over the world, so we will need to pay extra to preserve the capacity for independent vertically integrated production chains in multiple nations. Similarly, vaccines are only useful if people receive them, so delivery systems should be as robustly automated as possible.
None of these defenses will be cheap, but they'll be worth every penny. Our nations collectively spend trillions on defense against one another, but only billions to protect humanity from pandemic viruses known to have killed more people than any human weapon. That's foolish – especially since natural animal diseases that jump the species barrier aren't the only pandemic threats.
We will eventually make our society immune to naturally occurring pandemics, but that day has not yet come, and future pandemic viruses may not be natural.
The complete genomes of all historical pandemic viruses ever to have been sequenced are freely available to anyone with an internet connection. True, these are all agents we've faced before, so we have a pre-existing armory of pharmaceuticals and vaccines and experience. There's no guarantee that they would become pandemics again; for example, a large fraction of humanity is almost certainly immune to the 1918 influenza virus due to exposure to the related 2009 pandemic, making it highly unlikely that the virus would take off if released.
Still, making the blueprints publicly available means that a large and growing number of people with the relevant technical skills can single-handedly make deadly biological agents that might be able to spread autonomously -- at least if they can get their hands on the relevant DNA. At present, such people most certainly can, so long as they bother to check the publicly available list of which gene synthesis companies do the right thing and screen orders -- and by implication, which ones don't.
One would hope that at least some of the companies that don't advertise that they screen are "honeypots" paid by intelligence agencies to catch would-be bioterrorists, but even if most of them are, it's still foolish to let individuals access that kind of destructive power. We will eventually make our society immune to naturally occurring pandemics, but that day has not yet come, and future pandemic viruses may not be natural. Hence, we should build a secure and adaptive system capable of screening all DNA synthesis for known and potential future pandemic agents... without disclosing what we think is a credible bioweapon.
Whether or not it becomes a global pandemic, the emergence of Wuhan coronavirus has underscored the need for coordinated action to prevent the spread of pandemic disease. Let's ensure that our reactive response minimally prepares us for future threats, for one day, reacting may not be enough.