How mRNA Could Revolutionize Medicine
In November 2020, messenger RNA catapulted into the public consciousness when the first COVID-19 vaccines were authorized for emergency use. Around the same time, an equally groundbreaking yet relatively unheralded application of mRNA technology was taking place at a London hospital.
Over the past two decades, there's been increasing interest in harnessing mRNA — molecules present in all of our cells that act like digital tape recorders, copying instructions from DNA in the cell nucleus and carrying them to the protein-making structures — to create a whole new class of therapeutics.
Scientists realized that artificial mRNA, designed in the lab, could be used to instruct our cells to produce certain antibodies, turning our bodies into vaccine-making factories, or to recognize and attack tumors. More recently, researchers recognized that mRNA could also be used to make another groundbreaking technology far more accessible to more patients: gene editing. The gene-editing tool CRISPR has generated plenty of hype for its potential to cure inherited diseases. But delivering CRISPR to the body is complicated and costly.
"Most gene editing involves taking cells out of the patient, treating them and then giving them back, which is an extremely expensive process," explains Drew Weissman, professor of medicine at the University of Pennsylvania, who was involved in developing the mRNA technology behind the COVID-19 vaccines.
But last November, a Massachusetts-based biotech company called Intellia Therapeutics showed it was possible to use mRNA to make the CRISPR system inside the body, eliminating the need to extract cells out of the body and edit them in a lab. Just as mRNA can instruct our cells to produce antibodies against a viral infection, it can also teach them to produce one of the two components that make up CRISPR — a cutting protein that snips out a problem gene.
"The pandemic has really shown that not only are mRNA approaches viable, they could in certain circumstances be vastly superior to more traditional technologies."
In Intellia's London-based clinical trial, the company applied this for the first time in a patient with a rare inherited liver disease known as hereditary transthyretin amyloidosis with polyneuropathy. The disease causes a toxic protein to build up in a person's organs and is typically fatal. In a company press release, Intellia's president and CEO John Leonard swiftly declared that its mRNA-based CRISPR therapy could usher in a "new era of potential genome editing cures."
Weissman predicts that turning CRISPR into an affordable therapy will become the next major frontier for mRNA over the coming decade. His lab is currently working on an mRNA-based CRISPR treatment for sickle cell disease. More than 300,000 babies are born with sickle cell every year, mainly in lower income nations.
"There is a FDA-approved cure, but it involves taking the bone marrow out of the person, and then giving it back which is prohibitively expensive," he says. It also requires a patient to have a matched bone marrow done. "We give an intravenous injection of mRNA lipid nanoparticles that target CRISPR to the bone marrow stem cells in the patient, which is easy, and much less expensive."
Cancer Immunotherapy
Meanwhile, the overwhelming success of the COVID-19 vaccines has focused attention on other ways of using mRNA to bolster the immune system against threats ranging from other infectious diseases to cancer.
The practicality of mRNA vaccines – relatively small quantities are required to induce an antibody response – coupled with their adaptable design, mean companies like Moderna are now targeting pathogens like Zika, chikungunya and cytomegalovirus, or CMV, which previously considered commercially unviable for vaccine developers. This is because outbreaks have been relatively sporadic, and these viruses mainly affect people in low-income nations who can't afford to pay premium prices for a vaccine. But mRNA technology means that jabs could be produced on a flexible basis, when required, at relatively low cost.
Other scientists suggest that mRNA could even provide a means of developing a universal influenza vaccine, a goal that's long been the Holy Grail for vaccinologists around the world.
"The mRNA technology allows you to pick out bits of the virus that you want to induce immunity to," says Michael Mulqueen, vice president of business development at eTheRNA, a Belgium-based biotech that's developing mRNA-based vaccines for malaria and HIV, as well as various forms of cancer. "This means you can get the immune system primed to the bits of the virus that don't vary so much between strains. So you could actually have a single vaccine that protects against a whole raft of different variants of the same virus, offering more universal coverage."
Before mRNA became synonymous with vaccines, its biggest potential was for cancer treatments. BioNTech, the German biotech company that collaborated with Pfizer to develop the first authorized COVID-19 vaccine, was initially founded to utilize mRNA for personalized cancer treatments, and the company remains interested in cancers ranging from melanoma to breast cancer.
One of the major hurdles in treating cancer has been the fact that tumors can look very different from one person to the next. It's why conventional approaches, such as chemotherapy or radiation, don't work for every patient. But weaponizing mRNA against cancer primes the immune cells with the tumor's specific genetic sequence, training the patient's body to attack their own unique type of cancer.
"It means you're able to think about personalizing cancer treatments down to specific subgroups of patients," says Mulqueen. "For example, eTheRNA are developing a renal cell carcinoma treatment which will be targeted at around 20% of these patients, who have specific tumor types. We're hoping to take that to human trials next year, but the challenge is trying to identify the right patients for the treatment at an early stage."
Repairing Damaged mRNA
While hopes are high that mRNA could usher in new cancer treatments and make CRISPR more accessible, a growing number of companies are also exploring an alternative to gene editing, known as RNA editing.
In genetic disorders, the mRNA in certain cells is impaired due to a rogue gene defect, and so the body ceases to produce a particular vital protein. Instead of permanently deleting the problem gene with CRISPR, the idea behind RNA editing is to inject small pieces of synthetic mRNA to repair the existing mRNA. Scientists think this approach will allow normal protein production to resume.
Over the past few years, this approach has gathered momentum, as some researchers have recognized that it holds certain key advantages over CRISPR. Companies from Belgium to Japan are now looking at RNA editing to treat all kinds of disorders, from Huntingdon's disease, to amyotrophic lateral sclerosis, or ALS, and certain types of cancer.
"With RNA editing, you don't need to make any changes to the DNA," explains Daniel de Boer, CEO of Dutch biotech ProQR, which is looking to treat rare genetic disorders that cause blindness. "Changes to the DNA are permanent, so if something goes wrong, that may not be desirable. With RNA editing, it's a temporary change, so we dose patients with our drugs once or twice a year."
Last month, ProQR reported a landmark case study, in which a patient with a rare form of blindness called Leber congenital amaurosis, which affects the retina at the back of the eye, recovered vision after three months of treatment.
"We have seen that this RNA therapy restores vision in people that were completely blind for a year or so," says de Boer. "They were able to see again, to read again. We think there are a large number of other genetic diseases we could go after with this technology. There are thousands of different mutations that can lead to blindness, and we think this technology can target approximately 25% of them."
Ultimately, there's likely to be a role for both RNA editing and CRISPR, depending on the disease. "I think CRISPR is ideally suited for illnesses where you would like to permanently correct a genetic defect," says Joshua Rosenthal of the Marine Biology Laboratory in Chicago. "Whereas RNA editing could be used to treat things like pain, where you might want to reset a neural circuit temporarily over a shorter period of time."
Much of this research has been accelerated by the COVID-19 pandemic, which has played a major role in bringing mRNA to the forefront of people's minds as a therapeutic.
"The pandemic has really shown that not only are mRNA approaches viable, they could in certain circumstances be vastly superior to more traditional technologies," says Mulqueen. "In the future, I would not be surprised if many of the top pharma products are mRNA derived."
Five Memorable Animals Who Expanded the Scientific Frontier
Untold numbers of animals have contributed to science, in ways big and small. Studying cows and cowpox helped English doctor Edward Jenner create a smallpox vaccine; Ivan Pavlov's experiments on dogs' reactions to external stimuli heavily influenced modern behavioral psychology.
We have these five animals to thank for some of our most important scientific advancements, from space travel to better organ replacement options.
Scientists still work with rats, rabbits, and other mammals to test cosmetics and pharmaceuticals and to conduct infectious disease research. Most of these animals remain nameless and unknown to the public, but over the years, certain individuals have had an outsize effect. We have these five animals to thank for some of our most important scientific advancements, from space travel to better organ replacement options.
1) LAIKA THE DOG
Laika was the first living creature ever to orbit the Earth. In October 1957, the Soviet Sputnik I ship had made history as the first man-made object sent into Earth's orbit; Premier Nikita Khrushchev was keen to gain another Space Race victory by sending up a canine cosmonaut.
Laika ("barker" in Russian), was a stray dog, reportedly a husky-spitz mix, recruited among several other female strays for the trip. Although the scientists put extensive work into preparing Laika and the other canine finalists—evaluating their reactions to air-pressure variations, training them to adapt to pelvic sanitation devices meant to contain waste, and eventually having them live in pressurized capsules for weeks—there was no expectation that the dog would return to Earth, and only one meal's worth of food was sent up with her.
Laika the dog, with a mockup of her space capsule.
Sputnik II, six times heavier than its predecessor, launched on November 3, 1957. Soviet broadcasts reported that Laika, fitted out with surgically implanted devices to monitor her heart rate, blood pressure, and breathing rates, survived until November 12; the spacecraft stayed in orbit for five more months, burning up when it re-entered the atmosphere.
At the time, the Sputnik II team reassured the world that Laika had died painlessly of oxygen deprivation. It was only decades later, in the 1990s, that Oleg Gazenko—one of the scientists and dog trainers assigned to the mission—revealed that Laika had died 5 to 7 hours after launch from a combination of heat and stress. The capsule had overheated, probably as a result of the rushed preparation; after the fourth orbit, the temperature inside Sputnik was over 90 degrees, and it's doubtful she could have survived much past that. "The more time passes, the more I'm sorry about it. We shouldn't have done it," Gazenko said. "We did not learn enough from the mission to justify the death of the dog."
Yet even the four or five orbits that Laika did complete were enough to spur scientists to press on in the effort to send a human into space.
2) HAM THE CHIMP
Four years after Laika's ill-fated flight, a chimpanzee named Ham entered suborbital flight in the American Project Mercury MR-2 mission on January 31, 1961, becoming the first hominid in space—and unlike Laika, he returned to Earth, alive, after a 16-minute flight.
Even though Ham's flight was not destined for orbit, the spacecraft and booster used on his trip were the same combination intended for the first (human) American's trip later that year. If he came back unharmed, NASA's medical team would be prepared to okay astronaut Alan Shepard's flight.
Ham receives his well-deserved apple.
For approximately 18 months before liftoff, Ham was trained to perform simple tasks, like pushing levers, in response to visual and auditory cues. (If he failed, he received an electric shock; correct performance earned him a treat. Pavlov would have been pleased.)
At 37 pounds, Ham was also the heaviest animal to ever make it to space. His vital signs and movements were monitored from Earth, and after a light electric shock from the ground team reminded him of his tasks, he performed his lever-pushing just a bit slower than he had on Earth, verifying that motion would not be seriously impaired in space.
Less than three months after Ham returned to Earth, on April 12, 1961, Soviet cosmonaut Yuri Gagarin became the first human to complete an orbital flight; Shepard was close behind, successfully crewing the MR-3 mission on May 5. For his part, Ham "retired" to the National Zoo in Washington D.C. for 17 years, before being transferred to the North Carolina Zoological Park; he died of liver failure in 1983 at age 26. His grave is at the International Space Hall of Fame in New Mexico.
3) KOKO THE GORILLA
A western lowland gorilla born at the San Francisco Zoo, Hanabi-ko, or "Koko," became famous in the 1970s for her cognitive and communicative abilities. Psychologist Francine "Penny" Patterson, then a doctoral student at Stanford, chose Koko to work on a language research project, teaching her American Sign Language; by age four, Koko demonstrated the ability both to make up new words and to combine known words to express herself creatively, as opposed to simply mimicking her trainer.
Koko and Penny compare notes.
Koko's work with Patterson reflected levels of cognition that were higher than non-human primates had previously been thought to have; by the end of her life, her language skills were roughly equivalent to a young child's, with a vocabulary of around 1,000 signs and the ability to understand 2,000 words of spoken English.
An especially impactful study in 2012 showed that Koko had learned to play the recorder, revealing an ability for voluntary breath control that scientists had previously thought was linked closely to speech and could only be developed by humans. Barbara J. King, a biological anthropologist, suggested that Koko's immersion in a human environment may have helped her develop such a skill, and that it might be misleading to consider similar abilities "innate" or lacking in either humans or non-human primates.
Koko's displays of emotions also fascinated the public, especially those that seemed to closely mirror humans': she cared for pet kittens; appeared on Mr. Rogers' Neighborhood and untied the host's shoes for him; acted playfully with Robin Williams during a visit from him, and later expressed grief when told about the comedian's death. Koko died in her sleep in June 2018, at age 46. Patterson continues to run The Gorilla Foundation, which is dedicated to using inter-species communication to motivate conservation efforts.
4) DOLLY THE SHEEP
Dolly—named after country singer Dolly Parton—was the first mammal ever to be cloned from an adult somatic cell, using the process of nuclear transfer. She was born in 1996 as part of research by scientists Keith Campbell and Ian Wilmut of the University of Edinburgh.
Dolly the cloned sheep.
By taking a donor cell from an adult sheep's mammary gland, using it to replace the cell nucleus of an unfertilized, developing egg cell, and then bringing the resultant embryo to term, Campbell and Wilmut proved that even a mature cell (one that had developed to perform mammary gland functions) could revert to an embryonic state and go on to develop into any and all parts of a mammal.
Although cloned livestock are legal in the U.S.—the FDA approved the practice in 2008, after determining that there was no difference between the meat and milk of cattle, pigs, and goats—Dolly has had an even bigger impact on stem cell research. The successful test of nuclear transfer proved that it was possible to change a cell's gene expression by changing its nucleus.
Japanese stem cell biologist Shinya Yamanaka, inspired by the birth of Dolly, won the Nobel Prize in 2012 for his adaptation of the technique. He developed induced pluripotent stem cells (iPS cells) by chemically reverting mature cells back to an embryonic-like blank state that is highly desirable for disease research and treatment. This technique allows researchers to work with such stem cells without the ethically charged complication of having to destroy a human embryo in the process.
5) LAIKA THE PIG
Named in honor of the dog who made it to space, the second science-famous Laika was a genetically engineered pig born in China in 2015 as a result of gene editing carried out by Cambridge, MA startup eGenesis and collaborators.* eGenesis aims to create pigs whose organs—hearts, kidneys, lungs, and more—are safe to transplant into people.
Laika the gene-edited pig.
Using animal organs in humans (xenotransplantation) is tricky: the immune system is very good at recognizing interlopers, and the human body can start to reject an organ from another species in as little as five minutes. But pigs are otherwise exceptionally good potential donors for humans: their organs' sizes and functions are very similar, and their quick gestation and maturation make them attractive from an efficiency standpoint, given that twenty Americans die every day waiting for organ donors.
Perhaps unsurprisingly, Dolly the sheep helped move xenotransplantation forward. In the 1990s, immunologist David Sachs was able to use a similar cloning method to eliminate alpha-gal, an enzyme that is produced by most animals with immune systems, including pigs—but not humans. Since our immune systems don't recognize alpha-gal, attacks on that enzyme are a major cause of organ rejection. Sachs' experiments increased the survival time of pig organs in primates to weeks: a huge improvement, but not nearly enough for someone in need of a liver or heart.
The advent of CRISPR technology, and the ability to edit genes, has allowed another leap. In 2015, researchers at eGenesis used targeted gene-editing to eliminate the genes for porcine endogenous retroviruses from pig kidney cells. These viral elements are part of all pigs' genomes and pose a potentially high risk of infecting human cells. (After the HIV/AIDS crisis especially, there was a lot of anxiety about potentially introducing a new virus into the human population.)
The eGenesis lab used nuclear transfer to embed the edited nuclei into egg cells taken from a normal pig; and Laika was born months later—without the dangerous viral genes. eGenesis is now working to make the organs even more humanlike, with the goal of one day providing organs to every human patient in need.
*[Disclosure: In 2019, eGenesis received a series B investment from Leaps By Bayer, the funding sponsor of leapsmag. However, leapsmag is editorially independent of Bayer and is under no obligation to cover companies they invest in.]
[Correction, March 3, 2020: Laika the gene-edited pig was born in China, not Cambridge, and eGenesis is pursuing xenotransplant programs that include heart, kidney, and lung, but not skin, as originally written.]
A Surprising Breakthrough Will Allow Tiny Implants to Fix—and Even Upgrade—Your Body
Imagine it's the year 2040 and you're due for your regular health checkup. Time to schedule your next colonoscopy, Pap smear if you're a woman, and prostate screen if you're a man.
"The evolution of the biological ion transistor technology is a game changer."
But wait, you no longer need any of those, since you recently got one of the new biomed implants – a device that integrates seamlessly with body tissues, because of a watershed breakthrough that happened in the early 2020s. It's an improved biological transistor driven by electrically charged particles that move in and out of your own cells. Like insulin pumps and cardiac pacemakers, the medical implants of the future will go where they are needed, on or inside the body.
But unlike current implants, biological transistors will have a remarkable range of applications. Currently small enough to fit between a patient's hair follicles, the devices could one day enable correction of problems ranging from damaged heart muscle to failing retinas to deficiencies of hormones and enzymes.
Their usefulness raises the prospect of overcorrection to the point of human enhancement, as in the bionic parts that were imagined on the ABC television series The Six Million Dollar Man, which aired in the 1970s.
"The evolution of the biological ion transistor technology is a game changer," says Zoltan Istvan, who ran as a U.S. Presidential candidate in 2016 for the Transhumanist Party and later ran for California governor. Istvan envisions humans becoming faster, stronger, and increasingly more capable by way of technological innovations, especially in the biotechnology realm. "It's a big step forward on how we can improve and upgrade the human body."
How It Works
The new transistors are more like the soft, organic machines that biology has evolved than like traditional transistors built of semiconductors and metal, according to electric engineering expert Dion Khodagholy, one of the leaders of the team at Columbia University that developed the technology.
The key to the advance, notes Khodagholy, is that the transistors will interface seamlessly with tissue, because the electricity will be of the biological type -- transmitted via the flow of ions through liquid, rather than electrons through metal. This will boost the sensitivity of detection and decoding of biological change.
Naturally, such a paradigm change in the world of medical devices raises potential societal and ethical dilemmas.
Known as an ion-gated transistor (IGT), the new class of technology effectively melds electronics with molecules of human skin. That's the current prototype, but ultimately, biological devices will be able to go anywhere in the body. "IGT-based devices hold great promise for development of fully implantable bioelectronic devices that can address key clinical issues for patients with neuropsychiatric disease," says Khodagholy, based on the expectation that future devices could fuse with, measure, and modulate cells of the human nervous system.
Ethical Implications
Naturally, such a paradigm change in the world of medical devices raises potential societal and ethical dilemmas, starting with who receives the new technology and who pays for it. But, according clinical ethicist and health care attorney David Hoffman, we can gain insight from past experience, such as how society reacted to the invention of kidney dialysis in the mid 20th century.
"Kidney dialysis has been federally funded for all these decades, largely because the who-gets-the-technology question was an issue when the technology entered clinical medicine," says Hoffman, who teaches bioethics at Columbia's College of Physicians and Surgeons as well as at the law school and medical school of Yeshiva University. Just as dialysis became a necessity for many patients, he suggests that the emerging bio-transistors may also become critical life-sustaining devices, prompting discussions about federal coverage.
But unlike dialysis, biological transistors could allow some users to become "better than well," making it more similar to medication for ADHD (attention deficit hyperactivity disorder): People who don't require it can still use it to improve their baseline normal functioning. This raises the classic question: Should society draw a line between treatment and enhancement? And who gets to decide the answer?
If it's strictly a medical use of the technology, should everyone who needs it get to use it, regardless of ability to pay, relying on federal or private insurance coverage? On the other hand, if it's used voluntarily for enhancement, should that option also be available to everyone -- but at an upfront cost?
From a transhumanist viewpoint, getting wrapped up with concerns about the evolution of devices from therapy to enhancement is not worth the trouble.
It seems safe to say that some lively debates and growing pains are on the horizon.
"Even if [the biological ion transistor] is developed only for medical devices that compensate for losses and deficiencies similar to that of a cardiac pacemaker, it will be hard to stop its eventual evolution from compensation to enhancement," says Istvan. "If you use it in a bionic eye to restore vision to the blind, how do you draw the line between replacement of normal function and provision of enhanced function? Do you pass a law placing limits on visual capabilities of a synthetic eye? Transhumanists would oppose such laws, and any restrictions in one country or another would allow another country to gain an advantage by creating their own real-life super human cyborg citizens."
In the same breath though, Istvan admits that biotechnology on a bionic scale is bound to complicate a range of international phenomena, from economic growth and military confrontations to sporting events like the Olympic Games.
The technology is already here, and it's just a matter of time before we see clinically viable, implantable devices. As for how society will react, it seems safe to say that some lively debates and growing pains are on the horizon.