How Should Genetic Engineering Shape Our Future?
Terror. Error. Success. These are the three outcomes that ethicists evaluating a new technology should fear. The possibility that a breakthrough might be used maliciously. The possibility that newly empowered scientists might make a catastrophic mistake. And the possibility that a technology will be so successful that it will change how we live in ways that we can only guess—and that we may not want.
These tools will allow scientists to practice genetic engineering on a scale that is simultaneously far more precise and far more ambitious than ever before.
It was true for the scientists behind the Manhattan Project, who bequeathed a fear of nuclear terror and nuclear error, even as global security is ultimately defined by these weapons of mass destruction. It was true for the developers of the automobile, whose invention has been weaponized by terrorists and kills 3,400 people by accident each day, even as the more than 1 billion cars on the road today have utterly reshaped where we live and how we move. And it is true for the researchers behind the revolution in gene editing and writing.
Put simply, these tools will allow scientists to practice genetic engineering on a scale that is simultaneously far more precise and far more ambitious than ever before. Editing techniques like CRISPR enable exact genetic repairs through a simple cut and paste of DNA, while synthetic biologists aim to redo entire genomes through the writing and substitution of synthetic genes. The technologies are complementary, and they herald an era when the book of life will be not just readable, but rewritable. Food crops, endangered animals, even the human body itself—all will eventually be programmable.
The benefits are easy to imagine: more sustainable crops; cures for terminal genetic disorders; even an end to infertility. Also easy to picture are the ethical pitfalls as the negative images of those same benefits.
Terror is the most straightforward. States have sought to use biology as a weapon at least since invading armies flung the corpses of plague victims into besieged castles. The 1975 biological weapons convention banned—with general success—the research and production of offensive bioweapons, though a handful of lone terrorists and groups like the Oregon-based Rajneeshee cult have still carried out limited bioweapon attacks. Those incidents ultimately caused little death and damage, in part because medical science is mostly capable of defending us from those pathogens that are most easily weaponized. But gene editing and writing offers the chance to engineer germs that could be far more effective than anything nature could develop. Imagine a virus that combines the lethality of Ebola with the transmissibility of the common cold—and in the new world of biology, if you can imagine something, you will eventually be able to create it.
The benefits are easy to imagine: more sustainable crops; cures for terminal genetic disorders; even an end to infertility. Also easy to picture are the ethical pitfalls.
That's one reason why James Clapper, then the U.S. director of national intelligence, added gene editing to the list of threats posed by "weapons of mass destruction and proliferation" in 2016. But these new tools aren't merely dangerous in the wrong hands—they can also be dangerous in the right hands. The list of labs accidents involving lethal bugs is much longer than you'd want to know, at least if you're the sort of person who likes to sleep at night. The U.S. recently lifted a ban on research that works to make existing pathogens, like the H5N1 avian flu virus, more virulent and transmissible, often using new technologies like gene editing. Such work can help medicine better prepare for what nature might throw at us, but it could also make the consequences of a lab error far more catastrophic. There's also the possibility that the use of gene editing and writing in nature—say, by CRISPRing disease-carrying mosquitoes to make them sterile—could backfire in some unforeseen way. Add in the fact that the techniques behind gene editing and writing are becoming simpler and more automated with every year, and eventually millions of people will be capable—through terror or error—of unleashing something awful on the world.
The good news is that both the government and the researchers driving these technologies are increasingly aware of the risks of bioterror and error. One government program, the Functional Genomic and Computational Assessment of Threats (Fun GCAT), provides funding for scientists to scan genetic data looking for the "accidental or intentional creation of a biological threat." Those in the biotech industry know to keep an eye out for suspicious orders—say, a new customer who orders part of the sequence of the Ebola or smallpox virus. "With every invention there is a good use and a bad use," Emily Leproust, the CEO of the commercial DNA synthesis startup Twist Bioscience, said in a recent interview. "What we try hard to do is put in place as many systems as we can to maximize the good stuff, and minimize any negative impact."
But the greatest ethical challenges in gene editing and writing will arise not from malevolence or mistakes, but from success. Through a new technology called in vitro gametogenesis (IVG), scientists are learning how to turn adult human cells like a piece of skin into lab-made sperm and egg cells. That would be a huge breakthrough for the infertile, or for same-sex couples who want to conceive a child biologically related to both partners. It would also open the door to using gene editing to tinker with those lab-made embryos. At first interventions would address any obvious genetic disorders, but those same tools would likely allow the engineering of a child's intelligence, height and other characteristics. We might be morally repelled today by such an ability, as many scientists and ethicists were repelled by in-vitro fertilization (IVF) when it was introduced four decades ago. Yet more than a million babies in the U.S. have been born through IVF in the years since. Ethics can evolve along with technology.
These new technologies offer control over the code of life, but only we as a society can seize control over where these tools will take us.
Fertility is just one human institution that stands to be changed utterly by gene editing and writing, and it's a change we can at least imagine. As the new biology grows more ambitious, it will alter society in ways we can't begin to picture. Harvard's George Church and New York University's Jef Boeke are leading an effort called HGP-Write to create a completely synthetic human genome. While gene editing allows scientists to make small changes to the genome, the gene synthesis that Church and his collaborators are developing allows for total genetic rewrites. "It's a difference between editing a book and writing one," Church said in an interview earlier this year.
Church is already working on synthesizing organs that would be resistant to viruses, while other researchers like Harris Wang at Columbia University are experimenting with bioengineering mammalian cells to produce nutrients like amino acids that we currently need to get from food. The horizon is endless—and so are the ethical concerns of success. What if parents feel pressure to engineer their children just so they don't fall behind their IVG peers? What if only the rich are able to access synthetic biology technologies that could make them stronger, smarter and longer lived? Could inequality become encoded in the genome?
These are questions that are different from the terror and errors fears around biosecurity, because they ask us to think hard about what kind of future we want. To their credit, Church and his collaborators have engaged bioethicists from the start of their work, as have the pioneers behind CRISPR. But the challenges coming from successful gene editing and writing are too large to be outsourced to professional ethicists. These new technologies offer control over the code of life, but only we as a society can seize control over where these tools will take us.
Story by Big Think
Our gut microbiome plays a substantial role in our health and well-being. Most research, however, focuses on bacteria, rather than the viruses that hide within them. Now, research from the University of Copenhagen, newly published in Nature Microbiology, found that people who live past age 100 have a greater diversity of bacteria-infecting viruses in their intestines than younger people. Furthermore, they found that the viruses are linked to changes in bacterial metabolism that may support mucosal integrity and resistance to pathogens.
The microbiota and aging
In the early 1970s, scientists discovered that the composition of our gut microbiota changes as we age. Recent studies have found that the changes are remarkably predictable and follow a pattern: The microbiota undergoes rapid, dramatic changes as toddlers transition to solid foods; further changes become less dramatic during childhood as the microbiota strikes a balance between the host and the environment; and as that balance is achieved, the microbiota remains mostly stable during our adult years (ages 18-60). However, that stability is lost as we enter our elderly years, and the microbiome undergoes dramatic reorganization. This discovery led scientists to question what causes this change and what effect it has on health.
Centenarians have a distinct gut community enriched in microorganisms that synthesize potent antimicrobial molecules that can kill multidrug-resistant pathogens.
“We are always eager to find out why some people live extremely long lives. Previous research has shown that the intestinal bacteria of old Japanese citizens produce brand-new molecules that make them resistant to pathogenic — that is, disease-promoting — microorganisms. And if their intestines are better protected against infection, well, then that is probably one of the things that cause them to live longer than others,” said Joachim Johansen, a researcher at the University of Copenhagen.
In 2021, a team of Japanese scientists set out to characterize the effect of this change on older people’s health. They specifically wanted to determine if people who lived to be over 100 years old — that is, centenarians — underwent changes that provided them with unique benefits. They discovered centenarians have a distinct gut community enriched in microorganisms that synthesize potent antimicrobial molecules that can kill multidrug-resistant pathogens, including Clostridioides difficile and Enterococcus faecium. In other words, the late-life shift in microbiota reduces an older person’s susceptibility to common gut pathogens.
Viruses can change alter the genes of bacteria
Although the late-in-life microbiota change could be beneficial to health, it remained unclear what facilitated this shift. To solve this mystery, Johansen and his colleagues turned their attention to an often overlooked member of the microbiome: viruses. “Our intestines contain billions of viruses living inside bacteria, and they could not care less about human cells; instead, they infect the bacterial cells. And seeing as there are hundreds of different types of bacteria in our intestines, there are also lots of bacterial viruses,” said Simon Rasmussen, Johansen’s research advisor.
Centenarians had a more diverse virome, including previously undescribed viral genera.
For decades, scientists have explored the possibility of phage therapy — that is, using viruses that infect bacteria (called bacteriophages or simply phages) to kill pathogens. However, bacteriophages can also enhance the bacteria they infect. For example, they can provide genes that help their bacterial host attack other bacteria or provide new metabolic capabilities. Both of these can change which bacteria colonize the gut and, in turn, protect against certain disease states.
Intestinal viruses give bacteria new abilities
Johansen and his colleagues were interested in what types of viruses centenarians had in their gut and whether those viruses carried genes that altered metabolism. They compared fecal samples of healthy centenarians (100+ year-olds) with samples from younger patients (18-100 year-olds). They found that the centenarians had a more diverse virome, including previously undescribed viral genera.
They also revealed an enrichment of genes supporting key steps in the sulfate metabolic pathway. The authors speculate that this translates to increased levels of microbially derived sulfide, which may lead to health-promoting outcomes, such as supporting mucosal integrity and resistance to potential pathogens.
“We have learned that if a virus pays a bacterium a visit, it may actually strengthen the bacterium. The viruses we found in the healthy Japanese centenarians contained extra genes that could boost the bacteria,” said Johansen.
Simon Rasmussen added, “If you discover bacteria and viruses that have a positive effect on the human intestinal flora, the obvious next step is to find out whether only some or all of us have them. If we are able to get these bacteria and their viruses to move in with the people who do not have them, more people could benefit from them.”
This article originally appeared on Big Think, home of the brightest minds and biggest ideas of all time.
Sign up for Big Think’s newsletter
Embrace the mess: how to choose which scientists to trust
It’s no easy task these days for people to pick the scientists they should follow. According to a recent poll by NORC at the University of Chicago, only 39 percent of Americans have a "great deal" of confidence in the scientific community. The finding is similar to Pew research last year showing that 29 percent of Americans have this level of confidence in medical scientists.
Not helping: All the money in science. Just 20 percent of Pew’s survey respondents think scientists are transparent about conflicts of interest with industry. While this issue is common to many fields, the recent gold rush to foot the bill for research on therapies for healthy aging may be contributing to the overall sense of distrust. “There’s a feeling that at some point, the FDA may actually designate aging as a disease,” said Pam Maher, a neuroscientist who studies aging at Salk Institute. “That may be another impetus for a lot of these companies to start up.”
But partnering with companies is an important incentive for researchers across biomedical fields. Many scientists – with and without financial ties and incentives – are honest, transparent and doing important, inspiring work. I asked more than a dozen bioethicists and researchers in aging how to spot the scientists who are searching for the truth more than money, ego or fame.
Avoid Scientists Who Sound Overly Confident in messaging to the public. Some multi-talented scientists are adept at publishing in both top journals and media outlets. They’re great at dropping science without the confusing jargon, in ways the public can enjoy and learn from.
But do they talk in simple soundbites, painting scientific debates in pastels or black and white when colleagues use shades of gray? Maybe they crave your attention more than knowledge seeking. “When scientists speak in a very unnuanced way, that can be irresponsible,” said Josephine Johnston, a bioethicist at the Hastings Center.
Scientists should avoid exaggerations like “without a doubt” and even “we know” – unless they absolutely do. “I feel like there’s more and more hyperbole and attention seeking…[In aging research,] the loudest voices in the room are the fringe people,” said the biogenerontologist Matt Kaeberlein.
Separate Hype from Passion. Scientists should be, need to be passionate, Johnston explained. In the realm of aging, for example, Leonard Guarente, an MIT biologist and pioneer in the field of aging, told me about his belief that longer lifespans would make for a better world.
Instead of expecting scientists to be lab-dwelling robots, we should welcome their passion. It fuels scientific dedication and creativity. Fields like aging, AI and gene editing inspire the imaginations of the public and scientists alike. That’s not a bad thing.
But it does lay fertile ground for overstatements, such as claims by some that the first 1,000-year-old has already been born. If it sounds like sci-fi, it’s probably sci-fi.
Watch Out for Cult Behavior, some experts told me. Follow scientists who mix it up and engage in debates, said NYU bioethicist Arthur Caplan, not those who hang out only with researchers in the same ideological camp.
Look for whether they’re open to working with colleagues who don’t share their views. Through collaboration, they can resolve conflicting study results and data, said Danica Chen, a biologist at UC Berkeley. We should trust science as long as it doesn’t trust itself.
Messiness is Good. You want to find and follow scientists who’ve published research over the years that does not tell a clean story. “Our goal is to disprove our models,” Kaeberlein said. Scientific findings and views should zig and zag as their careers – and science – progress.
Follow scientists who write and talk publicly about new evidence that’s convinced them to reevaluate their own positions. Who embrace the inherent messiness of science – that’s the hallmark of an honest researcher.
The flipside is a very linear publishing history. Some scientists have a pet theory they’ve managed to support with more and more evidence over time, like a bricklayer gradually, flawlessly building the prettiest house in the neighborhood. Too pretty.
There’s a dark side to this charming simplicity: scientists sometimes try and succeed at engineering the very findings they’re hoping to get, said Charles Brenner, a biochemist at City of Hope National Medical Center.
These scientists “try to prove their model and ignore data that doesn’t fit their model because everybody likes a clean story,” Kaeberlein said. “People want to become famous,” said Samuel Klein, a biologist at Washington University. “So there’s always that bias to try to get positive results.”
Don’t Overvalue Credentials. Just because a scientist works at a top university doesn’t mean they’re completely trustworthy. “The institution means almost nothing,” Kaeberlein said.
Same goes for publishing in top journals, Kaeberlein added. “There’s an incentive structure that favors poor quality science and irreproducible results in high profile journals.”
Traditional proxies for credibility aren’t quite as reliable these days. Shortcuts don’t cut it anymore; you’ve got to scrutinize the actual research the scientist is producing. “You have to look at the literature and try to interpret it for yourself,” said Rafael de Cabo, a scientist at the National Institute on Aging, run by the U.S. National Institutes of Health. Or find journalists you trust to distill this information for you, Klein suggested.
Consider Company Ties. Companies can help scientists bring their research to the public more directly and efficiently than the slower grind of academia, where “the opportunities and challenges weren’t big enough for me,” said Kaeberlein, who left the University of Washington earlier this year.
"It’s generally not universities that can take technology through what we call the valley of death,” Brenner said. “There are rewards associated with taking risks.”
Many scientists are upfront about their financial conflicts of interest – sometimes out of necessity. “At a place like Duke, our conflicts of interest are very closely managed, said Matthew Hirschey, who researchers metabolism at Duke’s Molecular Physiology Institute. “We have to be incredibly explicit about our partnerships.”
But the willingness to disclose conflicts doesn’t necessarily mean the scientist is any less biased. Those conflicts can still affect their views and outcomes of their research, said Johnston, the Hastings bioethicist.
“The proof is in the pudding, and it’s got to be done by people who are not vested in making money off the results,” Klein said. Worth noting: even if scientists eschew companies, they’re almost always financially motivated to get grants for their research.
Bottom line: lots of scientists work for and with companies, and many are highly trustworthy leaders in their fields. But if a scientist is in thick with companies and checks some of the other boxes on this list, their views and research may be compromised.