How Should Genetic Engineering Shape Our Future?
Terror. Error. Success. These are the three outcomes that ethicists evaluating a new technology should fear. The possibility that a breakthrough might be used maliciously. The possibility that newly empowered scientists might make a catastrophic mistake. And the possibility that a technology will be so successful that it will change how we live in ways that we can only guess—and that we may not want.
These tools will allow scientists to practice genetic engineering on a scale that is simultaneously far more precise and far more ambitious than ever before.
It was true for the scientists behind the Manhattan Project, who bequeathed a fear of nuclear terror and nuclear error, even as global security is ultimately defined by these weapons of mass destruction. It was true for the developers of the automobile, whose invention has been weaponized by terrorists and kills 3,400 people by accident each day, even as the more than 1 billion cars on the road today have utterly reshaped where we live and how we move. And it is true for the researchers behind the revolution in gene editing and writing.
Put simply, these tools will allow scientists to practice genetic engineering on a scale that is simultaneously far more precise and far more ambitious than ever before. Editing techniques like CRISPR enable exact genetic repairs through a simple cut and paste of DNA, while synthetic biologists aim to redo entire genomes through the writing and substitution of synthetic genes. The technologies are complementary, and they herald an era when the book of life will be not just readable, but rewritable. Food crops, endangered animals, even the human body itself—all will eventually be programmable.
The benefits are easy to imagine: more sustainable crops; cures for terminal genetic disorders; even an end to infertility. Also easy to picture are the ethical pitfalls as the negative images of those same benefits.
Terror is the most straightforward. States have sought to use biology as a weapon at least since invading armies flung the corpses of plague victims into besieged castles. The 1975 biological weapons convention banned—with general success—the research and production of offensive bioweapons, though a handful of lone terrorists and groups like the Oregon-based Rajneeshee cult have still carried out limited bioweapon attacks. Those incidents ultimately caused little death and damage, in part because medical science is mostly capable of defending us from those pathogens that are most easily weaponized. But gene editing and writing offers the chance to engineer germs that could be far more effective than anything nature could develop. Imagine a virus that combines the lethality of Ebola with the transmissibility of the common cold—and in the new world of biology, if you can imagine something, you will eventually be able to create it.
The benefits are easy to imagine: more sustainable crops; cures for terminal genetic disorders; even an end to infertility. Also easy to picture are the ethical pitfalls.
That's one reason why James Clapper, then the U.S. director of national intelligence, added gene editing to the list of threats posed by "weapons of mass destruction and proliferation" in 2016. But these new tools aren't merely dangerous in the wrong hands—they can also be dangerous in the right hands. The list of labs accidents involving lethal bugs is much longer than you'd want to know, at least if you're the sort of person who likes to sleep at night. The U.S. recently lifted a ban on research that works to make existing pathogens, like the H5N1 avian flu virus, more virulent and transmissible, often using new technologies like gene editing. Such work can help medicine better prepare for what nature might throw at us, but it could also make the consequences of a lab error far more catastrophic. There's also the possibility that the use of gene editing and writing in nature—say, by CRISPRing disease-carrying mosquitoes to make them sterile—could backfire in some unforeseen way. Add in the fact that the techniques behind gene editing and writing are becoming simpler and more automated with every year, and eventually millions of people will be capable—through terror or error—of unleashing something awful on the world.
The good news is that both the government and the researchers driving these technologies are increasingly aware of the risks of bioterror and error. One government program, the Functional Genomic and Computational Assessment of Threats (Fun GCAT), provides funding for scientists to scan genetic data looking for the "accidental or intentional creation of a biological threat." Those in the biotech industry know to keep an eye out for suspicious orders—say, a new customer who orders part of the sequence of the Ebola or smallpox virus. "With every invention there is a good use and a bad use," Emily Leproust, the CEO of the commercial DNA synthesis startup Twist Bioscience, said in a recent interview. "What we try hard to do is put in place as many systems as we can to maximize the good stuff, and minimize any negative impact."
But the greatest ethical challenges in gene editing and writing will arise not from malevolence or mistakes, but from success. Through a new technology called in vitro gametogenesis (IVG), scientists are learning how to turn adult human cells like a piece of skin into lab-made sperm and egg cells. That would be a huge breakthrough for the infertile, or for same-sex couples who want to conceive a child biologically related to both partners. It would also open the door to using gene editing to tinker with those lab-made embryos. At first interventions would address any obvious genetic disorders, but those same tools would likely allow the engineering of a child's intelligence, height and other characteristics. We might be morally repelled today by such an ability, as many scientists and ethicists were repelled by in-vitro fertilization (IVF) when it was introduced four decades ago. Yet more than a million babies in the U.S. have been born through IVF in the years since. Ethics can evolve along with technology.
These new technologies offer control over the code of life, but only we as a society can seize control over where these tools will take us.
Fertility is just one human institution that stands to be changed utterly by gene editing and writing, and it's a change we can at least imagine. As the new biology grows more ambitious, it will alter society in ways we can't begin to picture. Harvard's George Church and New York University's Jef Boeke are leading an effort called HGP-Write to create a completely synthetic human genome. While gene editing allows scientists to make small changes to the genome, the gene synthesis that Church and his collaborators are developing allows for total genetic rewrites. "It's a difference between editing a book and writing one," Church said in an interview earlier this year.
Church is already working on synthesizing organs that would be resistant to viruses, while other researchers like Harris Wang at Columbia University are experimenting with bioengineering mammalian cells to produce nutrients like amino acids that we currently need to get from food. The horizon is endless—and so are the ethical concerns of success. What if parents feel pressure to engineer their children just so they don't fall behind their IVG peers? What if only the rich are able to access synthetic biology technologies that could make them stronger, smarter and longer lived? Could inequality become encoded in the genome?
These are questions that are different from the terror and errors fears around biosecurity, because they ask us to think hard about what kind of future we want. To their credit, Church and his collaborators have engaged bioethicists from the start of their work, as have the pioneers behind CRISPR. But the challenges coming from successful gene editing and writing are too large to be outsourced to professional ethicists. These new technologies offer control over the code of life, but only we as a society can seize control over where these tools will take us.
Are the gains from gain-of-function research worth the risks?
Scientists have long argued that gain-of-function research, which can make viruses and other infectious agents more contagious or more deadly, was necessary to develop therapies and vaccines to counter the pathogens in case they were used for biological warfare. As the SARS-CoV-2 origins are being investigated, one prominent theory suggests it had leaked from a biolab that conducted gain-of-function research, causing a global pandemic that claimed nearly 6.9 million lives. Now some question the wisdom of engaging in this type of research, stating that the risks may far outweigh the benefits.
“Gain-of-function research means genetically changing a genome in a way that might enhance the biological function of its genes, such as its transmissibility or the range of hosts it can infect,” says George Church, professor of genetics at Harvard Medical School. This can occur through direct genetic manipulation as well as by encouraging mutations while growing successive generations of micro-organism in culture. “Some of these changes may impact pathogenesis in a way that is hard to anticipate in advance,” Church says.
In the wake of the global pandemic, the pros and cons of gain-of-function research are being fiercely debated. Some scientists say this type of research is vital for preventing future pandemics or for preparing for bioweapon attacks. Others consider it another disaster waiting to happen. The Government Accounting Office issued a report charging that a framework developed by the U.S. Department of Health & Human Services (HHS) provided inadequate oversight of this potentially deadly research. There’s a movement to stop it altogether. In January, the Viral Gain-of-Function Research Moratorium Act (S. 81) was introduced into the Senate to cease awarding federal research funding to institutions doing gain-of-function studies.
While testifying before the House COVID Origins Select Committee on March 8th, Robert Redfield, former director of the U.S. Centers for Disease Control and Prevention, said that COVID-19 may have resulted from an accidental lab leak involving gain-of-function research. Redfield said his conclusion is based upon the “rapid and high infectivity for human-to-human transmission, which then predicts the rapid evolution of new variants.”
“It is a very, very, very small subset of life science research that could potentially generate a potential pandemic pathogen,” said Gerald Parker, associate dean for Global One Health at Texas A&M University.
“In my opinion,” Redfield continues, “the COVID-19 pandemic presents a case study on the potential dangers of such research. While many believe that gain-of-function research is critical to get ahead of viruses by developing vaccines, in this case, I believe that was the exact opposite.” Consequently, Redfield called for a moratorium on gain-of-function research until there is consensus about the value of such risky science.
What constitutes risky?
The Federal Select Agent Program lists 68 specific infectious agents as risky because they are either very contagious or very deadly. In order to work with these 68 agents, scientists must register with the federal government. Meanwhile, research on deadly pathogens that aren’t easily transmitted, or pathogens that are quite contagious but not deadly, can be conducted without such oversight. “If you’re not working with select agents, you’re not required to register the research with the federal government,” says Gerald Parker, associate dean for Global One Health at Texas A&M University. But the 68-item list may not have everything that could possibly become dangerous or be engineered to be dangerous, thus escaping the government’s scrutiny—an issue that new regulations aim to address.
In January 2017, the White House Office of Science and Technology Policy (OSTP) issued additional guidance. It required federal departments and agencies to follow a series of steps when reviewing proposed research that could create, transfer, or use potential pandemic pathogens resulting from the enhancement of a pathogen’s transmissibility or virulence in humans.
In defining risky pathogens, OSTP included viruses that were likely to be highly transmissible and highly virulent, and thus very deadly. The Proposed Biosecurity Oversight Framework for the Future of Science, outlined in 2023, broadened the scope to require federal review of research “that is reasonably anticipated to enhance the transmissibility and/or virulence of any pathogen” likely to pose a threat to public health, health systems or national security. Those types of experiments also include the pathogens’ ability to evade vaccines or therapeutics, or diagnostic detection.
However, Parker says that dangers of generating a pandemic-level germ are tiny. “It is a very, very, very small subset of life science research that could potentially generate a potential pandemic pathogen.” Since gain-of-function guidelines were first issued in 2017, only three such research projects have met those requirements for HHS review. They aimed to study influenza and bird flu. Only two of those projects were funded, according to the NIH Office of Science Policy. For context, NIH funded approximately 11,000 of the 54,000 grant applications it received in 2022.
Guidelines governing gain-of-function research are being strengthened, but Church points out they aren’t ideal yet. “They need to be much clearer about penalties and avoiding positive uses before they would be enforceable.”
What do we gain from gain-of-function research?
The most commonly cited reason to conduct gain-of-function research is for biodefense—the government’s ability to deal with organisms that may pose threats to public health.
In the era of mRNA vaccines, the advance preparedness argument may be even less relevant.
“The need to work with potentially dangerous viruses is central to our preparedness,” Parker says. “It’s essential that we know and understand the basic biology, microbiology, etc. of some of these dangerous pathogens.” That includes increasing our knowledge of the molecular mechanisms by which a virus could become a sustained threat to humans. “Knowing that could help us detect [risks] earlier,” Parker says—and could make it possible to have medical countermeasures, like vaccines and therapeutics, ready.
Most vaccines, however, aren’t affected by this type of research. Essentially, scientists hope they will never need to use it. Moreover, Paul Mango, HSS former deputy chief of staff for policy, and author of the 2022 book Warp Speed, says he believes that in the era of mRNA vaccines, the advance preparedness argument may be even less relevant. “That’s because these vaccines can be developed and produced in less than 12 months, unlike traditional vaccines that require years of development,” he says.
Can better oversight guarantee safety?
Another situation, which Parker calls unnecessarily dangerous, is when regulatory bodies cannot verify that the appropriate biosafety and biosecurity controls are in place.
Gain-of-function studies, Parker points out, are conducted at the basic research level, and they’re performed in high-containment labs. “As long as all the processes, procedures and protocols are followed and there’s appropriate oversight at the institutional and scientific level, it can be conducted safely.”
Globally, there are 69 Biosafety Level 4 (BSL4) labs operating, under construction or being planned, according to recent research from King’s College London and George Mason University for Global BioLabs. Eleven of these 18 high-containment facilities that are planned or under construction are in Asia. Overall, three-quarters of the BSL4 labs are in cities, increasing public health risks if leaks occur.
Researchers say they are confident in the oversight system for BSL4 labs within the U.S. They are less confident in international labs. Global BioLabs’ report concurs. It gives the highest scores for biosafety to industrialized nations, led by France, Australia, Canada, the U.S. and Japan, and the lowest scores to Saudi Arabia, India and some developing African nations. Scores for biosecurity followed similar patterns.
“There are no harmonized international biosafety and biosecurity standards,” Parker notes. That issue has been discussed for at least a decade. Now, in the wake of SARS and the COVID-19 pandemic, scientists and regulators are likely to push for unified oversight standards. “It’s time we got serious about international harmonization of biosafety and biosecurity standards and guidelines,” Parker says. New guidelines are being worked on. The National Science Advisory Board for Biosecurity (NSABB) outlined its proposed recommendations in the document titled Proposed Biosecurity Oversight Framework for the Future of Science.
The debates about whether gain-of-function research is useful or poses unnecessary risks to humanity are likely to rage on for a while. The public too has a voice in this debate and should weigh in by communicating with their representatives in government, or by partaking in educational forums or initiatives offered by universities and other institutions. In the meantime, scientists should focus on improving the research regulations, Parker notes. “We need to continue to look for lessons learned and for gaps in our oversight system,” he says. “That’s what we need to do right now.”
The rise of remote work is a win-win for people with disabilities and employers
Disability advocates see remote work as a silver lining of the pandemic, a win-win for adults with disabilities and the business world alike.
Any corporate leader would jump at the opportunity to increase their talent pool of potential employees by 15 percent, with all these new hires belonging to an underrepresented minority. That’s especially true given tight labor markets and CEO desires to increase headcount. Yet, too few leaders realize that people with disabilities are the largest minority group in this country, numbering 50 million.
Some executives may dread the extra investments in accommodating people’s disabilities. Yet, providing full-time remote work could suffice, according to a new study by the Economic Innovation Group think tank. The authors found that the employment rate for people with disabilities did not simply reach the pre-pandemic level by mid-2022, but far surpassed it, to the highest rate in over a decade. “Remote work and a strong labor market are helping [individuals with disabilities] find work,” said Adam Ozimek, who led the research and is chief economist at the Economic Innovation Group.
Disability advocates see this development as a silver lining of the pandemic, a win-win for adults with disabilities and the business world alike. For decades before the pandemic, employers had refused requests from workers with disabilities to work remotely, according to Thomas Foley, executive director of the National Disability Institute. During the pandemic, "we all realized that...many of us could work remotely,” Foley says. “[T]hat was disproportionately positive for people with disabilities."
Charles-Edouard Catherine, director of corporate and government relations for the National Organization on Disability, said that remote-work options had been advocated for many years to accommodate disabilities. “It’s a little frustrating that for decades corporate America was saying it’s too complicated, we’ll lose productivity, and now suddenly it’s like, sure, let’s do it.”
The pandemic opened doors for people with disabilities
Early in the pandemic, employment rates dropped for everyone, including people with disabilities, according to Ozimek’s research. However, these rates recovered quickly. In the second quarter of 2022, people with disabilities aged 25 to 54, the prime working age, are 3.5 percent more likely to be employed, compared to before the pandemic.
What about people without disabilites? They are still 1.1 percent less likely to be employed.
These numbers suggest that remote work has enabled a substantial number of people with disabilities to find and retain employment.
“We have a last-in, first-out labor market, and [people with disabilities] are often among the last in and the first out,” Ozimek says. However, this dynamic has changed, with adults with disabilities seeing employment rates recover much faster. Now, the question is whether the new trend will endure, Ozimek adds. “And my conclusion is that not only is it a permanent thing, but it’s going to improve.”
Gene Boes, president and chief executive of the Northwest Center, a Seattle organization that helps people with disabilities become more independent, confirms this finding. “The new world we live in has opened the door a little bit more…because there’s just more demand for labor.”
Long COVID disabilities put a premium on remote work
Remote work can help mitigate the impact of long COVID. The U.S. Centers for Disease Control and Prevention reports that about 19 percent of those who had COVID developed long COVID. Recent Census Bureau data indicates that 16 million working age Americans suffer from it, with economic costs estimated at $3.7 trillion.
Certainly, many of these so-called long-haulers experience relatively mild symptoms - such as loss of smell - which, while troublesome, are not disabling. But other symptoms are serious enough to be disabilities.
According to a recent study from the Federal Reserve Bank of Minneapolis, about a quarter of those with long COVID changed their employment status or working hours. That means long COVID was serious enough to interfere with work for 4 million people. For many, the issue was serious enough to qualify them as disabled.
Indeed, the Federal Reserve Bank of New York found in a just-released study that the number of individuals with disabilities in the U.S. grew by 1.7 million. That growth stemmed mainly from long COVID conditions such as fatigue and brain fog, meaning difficulties with concentration or memory, with 1.3 million people reporting an increase in brain fog since mid-2020.
Many had to drop out of the labor force due to long COVID. Yet, about 900,000 people who are newly disabled have managed to continue working. Without remote work, they might have lost these jobs.
For example, a software engineer at one of my client companies has struggled with brain fog related to long COVID. With remote work, this employee can work during the hours when she feels most mentally alert and focused, even if that means short bursts of productivity throughout the day. With flexible scheduling, she can take rests, meditate, or engage in activities that help her regain focus and energy. Without the need to commute to the office, she can save energy and time and reduce stress, which is crucial when dealing with brain fog.
In fact, the author of the Federal Reserve Bank of New York study notes that long COVID can be considered a disability under the Americans with Disability Act, depending on the specifics of the condition. That means the law can require private employers with fifteen or more staff, as well as government agencies, to make reasonable accommodations for those with long COVID. Richard Deitz, the author of this study, writes in the paper that “telework and flexible scheduling are two accommodations that can be particularly beneficial for workers dealing with fatigue and brain fog.”
The current drive to return to the office, led by many C-suite executives, may need to be reconsidered in light of legal and HR considerations. Arlene S. Kanter, director of the disability law and policy program at the Syracuse University College of Law, said that the question should depend on whether people with disabilities can perform their work well at home, as they did during Covid outbreaks. “[T]hen people with disabilities, as a matter of accommodation, shouldn’t be denied that right,” Kanter said.
Diversity benefits
But companies shouldn’t need to worry about legal regulations. It simply makes dollars and sense to expand their talent pool by 15% of an underrepresented minority. After all, extensive research shows that improving diversity boosts both decision-making and financial performance.
Companies that are offering more flexible work options have already gained significant benefits in terms of diverse hires. In its efforts to adapt to the post-pandemic environment, Meta, the owner of Facebook and Instagram, decided to offer permanent fully remote work options to its entire workforce. And according to Meta chief diversity officer Maxine Williams, the candidates who accepted job offers for remote positions were “substantially more likely” to come from diverse communities: people with disabilities, Black, Hispanic, Alaskan Native, Native American, veterans, and women. The numbers bear out these claims: people with disabilities increased from 4.7 to 6.2 percent of Meta’s employees.
Having consulted for 21 companies to help them transition to hybrid work arrangements, I can confirm that Meta’s numbers aren’t a fluke. The more my clients proved willing to offer remote work, the more staff with disabilities they recruited - and retained. That includes employees with mobility challenges. But it also includes employees with less visible disabilities, such as people with long COVID and immunocompromised people who feel reluctant to put themselves at risk of getting COVID by coming into the office.
Unfortunately, many leaders fail to see the benefits of remote work for underrepresented groups, such as those with disabilities. Some even say the opposite is true, with JP Morgan CEO Jamie Dimon claiming that returning to the office will aid diversity.
What explains this poor executive decision making? Part of the answer comes from a mental blindspot called the in-group bias. Our minds tend to favor and pay attention to the concerns of those in the group of people who seem to look and think like us. Dimon and other executives without disabilities don’t perceive people with disabilities to be part of their in-group. They thus are blind to the concerns of those with disabilities, which leads to misperceptions such as Dimon’s that returning to the office will aid diversity.
In-group bias is one of many dangerous judgment errors known as cognitive biases. They impact decision making in all life areas, ranging from the future of work to relationships.
Another relevant cognitive bias is the empathy gap. This term refers to our difficulty empathizing with those outside of our in-group. The lack of empathy combines with the blindness from the in-group bias, causing executives to ignore the feelings of employees with disabilities and prospective hires.
Omission bias also plays a role. This dangerous judgment error causes us to perceive failure to act as less problematic than acting. Consequently, executives perceive a failure to support the needs of those with disabilities as a minor matter.
Conclusion
The failure to empower people with disabilities through remote work options will prove costly to the bottom lines of companies. Not only are limiting their talent pool by 15 percent, they’re harming their ability to recruit and retain diverse candidates. And as their lawyers and HR departments will tell them, by violating the ADA, they are putting themselves in legal jeopardy.
By contrast, companies like Meta - and my clients - that offer remote work opportunities are seizing a competitive advantage by recruiting these underrepresented candidates. They’re lowering costs of labor while increasing diversity. The future belongs to the savvy companies that offer the flexibility that people with disabilities need.