How We Can Return to Normal Life in the COVID-19 Era

How We Can Return to Normal Life in the COVID-19 Era

A crowded baseball stadium is the epitome of "getting back to normal."

(© terovesalainen/Adobe)

I was asked recently when life might return to normal. The question is simple but the answer is complex, with many knowns, lots of known unknowns, and some unknown unknowns. But I'll give it my best shot.

Keep Reading Keep Reading
Robert M. Wachter, Md
Robert M. Wachter, MD is Professor and Chair of the Department of Medicine at the University of California, San Francisco, where he is the Holly Smith Distinguished Professor in Science and Medicine and the Benioff Endowed Chair in Hospital Medicine. The department leads the nation in NIH grants and is generally ranked as one of the nation’s best. Wachter is author of 250 articles and 6 books and is a frequent contributor to the New York Times and Wall Street Journal. He coined the term “hospitalist” in 1996 and is often considered the “father” of the hospitalist field, the fastest growing specialty in the history of modern medicine. He is past president of the Society of Hospital Medicine and past chair of the American Board of Internal Medicine. In the safety and quality arenas, he has written two books on the subject, including Understanding Patient Safety, the world’s top selling safety primer. In 2004, he received the John M. Eisenberg Award, the nation’s top honor in patient safety. Thirteen times, Modern Healthcare magazine has ranked him as one of the 50 most influential physician-executives in the U.S.; he was #1 on the list in 2015. His 2015 book, The Digital Doctor: Hope, Hype and Harm at the Dawn of Medicine’s Computer Age, was a New York Times science bestseller. In 2016, he chaired a blue-ribbon commission advising England’s National Health Service on its digital strategy. In 2020, his frequent tweets on Covid-19 were viewed over 50 million times by more than 100,000 followers and serve as a trusted source of information on the clinical, public health, and policy issues surrounding the pandemic.
Meet Dr. Renee Wegrzyn, the first Director of President Biden's new health agency, ARPA-H

Today's podcast guest, Dr. Renee Wegrzyn, directs ARPA-H, a new agency formed last year to spearhead health innovations. Time will tell if ARPA-H will produce advances on the level of its fellow agency, DARPA.

Adobe Stock

In today’s podcast episode, I talk with Renee Wegrzyn, appointed by President Biden as the first director of a health agency created last year, the Advanced Research Projects Agency for Health, or ARPA-H. It’s inspired by DARPA, the agency that develops innovations for the Defense department and has been credited with hatching world-changing technologies such as ARPANET, which became the internet.

Time will tell if ARPA-H will lead to similar achievements in the realm of health. That’s what President Biden and Congress expect in return for funding ARPA-H at 2.5 billion dollars over three years.

Keep Reading Keep Reading
Matt Fuchs
Matt Fuchs is the host of the Making Sense of Science podcast and served previously as the editor-in-chief of Leaps.org. He writes as a contributor to the Washington Post, and his articles have also appeared in the New York Times, WIRED, Nautilus Magazine, Fortune Magazine and TIME Magazine. Follow him @fuchswriter.
Tiny, tough “water bears” may help bring new vaccines and medicines to sub-Saharan Africa

Tardigrades can completely dehydrate and later rehydrate themselves, a survival trick that scientists are harnessing to preserve medicines in hot temperatures.

Adobe Stock

Microscopic tardigrades, widely considered to be some of the toughest animals on earth, can survive for decades without oxygen or water and are thought to have lived through a crash-landing on the moon. Also known as water bears, they survive by fully dehydrating and later rehydrating themselves – a feat only a few animals can accomplish. Now scientists are harnessing tardigrades’ talents to make medicines that can be dried and stored at ambient temperatures and later rehydrated for use—instead of being kept refrigerated or frozen.

Many biologics—pharmaceutical products made by using living cells or synthesized from biological sources—require refrigeration, which isn’t always available in many remote locales or places with unreliable electricity. These products include mRNA and other vaccines, monoclonal antibodies and immuno-therapies for cancer, rheumatoid arthritis and other conditions. Cooling is also needed for medicines for blood clotting disorders like hemophilia and for trauma patients.

Keep Reading Keep Reading
Gail Dutton
Gail Dutton has covered the biopharmaceutical industry as a journalist for the past three decades. She focuses on the intersection of business and science, and has written extensively for GEN – Genetic Engineering & Biotechnology News, Life Science Leader, The Scientist and BioSpace. Her articles also have appeared in Popular Science, Forbes, Entrepreneur and other publications.