Is Alzheimer's Research On the Wrong Track?
"The graveyard of hope." That's what experts call the quest for effective Alzheimer's treatments, a two-decade effort that has been marked by one costly and high-profile failure after another. Nearly all of the drugs tested target one of the key hallmarks of Alzheimer's disease: amyloid plaques, the barnacle-like proteins long considered the culprits behind the memory-robbing ravages of the disease. Yet all the anti-amyloid drugs have flopped miserably, prompting some scientists to believe we've fingered the wrong villain.
"We're flogging a dead horse," says Peter Davies, PhD, an Alzheimer's researcher at the Feinstein Institute for Medical Research in New York. "The fact that no one's gotten better suggests that you have the wrong mechanism."
If the naysayers are right, how could a scientific juggernaut of this magnitude—involving hundreds of scientists in academia and industry at a cost of tens of billions of dollars--be so far off the mark? There are no easy answers, but some experts believe this calls into question how research is conducted and blame part of the failure on the insular culture of the scientific aristocracy at leading academic institutions.
"The field began to be dominated by narrow views."
"The field began to be dominated by narrow views," says George Perry, PhD, an Alzheimer's researcher and dean of the College of Sciences at the University of Texas in San Antonio. "The people pushing this were incredibly articulate, powerful and smart. They'd go to scientific meetings and all hang around with each other and they'd self-reinforce."
In fairness, there was solid science driving this. Post-mortem analyses of Alzheimer's patients found their brains were riddled with amyloid plaques. People with a strong family history of Alzheimer's had genetic mutations in the genes that encode for the production of amyloids. And in animal studies, scientists found that if amyloids were inserted into the brains of transgenic mice, they exhibited signs of memory loss. Remove the amyloids and they suddenly got better. This body of research helped launch the Amyloid Cascade Hypothesis of the disease in 1992—which has driven research ever since.
Scientists believed that the increase in the production of these renegade proteins, which form sticky plaques and collect outside of the nerve cells in the brain, triggers a series of events that interfere with the signaling system between synapses. This seems to prevent cells from relaying messages or talking to each other, causing memory loss, confusion and increasing difficulties doing the normal tasks of life. The path forward seemed clear: stop amyloid production and prevent disease progression. "We were going after the obvious abnormality," says Dr. David Knopman, a neurologist and Alzheimer's researcher at the Mayo Clinic in Rochester, Minnesota.
"Why wouldn't you do that?" Why ideed.
In hindsight, though, there was no real smoking gun—no one ever showed precisely how the production of amyloids instigates the destruction of vital brain circuits.
"Amyloids are clearly important," says Perry, "but they have not proven to be necessary and sufficient for the development of this disease."
Ironically, there have been hints all along that amyloids may not be toxic bad boys.
A handful of studies revealed that amyloid proteins are produced in healthy brains to protect synapses. Research on animal models that mimic diseases suggest that certain forms of amyloids can ease damage from strokes, traumatic brain injuries and even heart attacks. In a 2013 study, to cite just one example, a Stanford University team injected synthetic amyloids into paralyzed mice with an inflammatory disorder similar to multiple sclerosis. Instead of worsening their symptoms—which is what the researchers expected to happen--the mice could suddenly walk again. Remove the amyloids, and they became paralyzed once more.
Still other studies suggest amyloids may actually function as molecular guardians dispatched to silence inflammation and mop up errant cells after an injury as part of the body's waste management system. "The presence of amyloids is a protective response to something going wrong, a threat," says Dr. Dale Bredesen, a UCLA neurologist. "But the problem arises when the threats are chronic, multiple, unrelenting and intense. The defenses the brain mounts are also intense and these protective mechanisms cross the line into causing harm, and killing the very synapses and brain cells the amyloid was called up to protect."
So how did research get derailed?
In a way, we're victims of our own success, critics say.
Early medical triumphs in the heady post-World War II era, like the polio vaccine that eradicated the crippling childhood killer, or antibiotics, reinforced the magic bullet idea of curing disease--find a target and then hit it relentlessly. That's why when scientists made the link between amyloids and disease progression, Big Pharma jumped on the bandwagon in hopes of inventing a trillion-dollar drug. This approach is fine when you have an acute illness, like an infectious disease that's caused by one agent, but not for something as complicated as Alzheimer's.
The other piece of the problem is the dwindling federal dollars for basic research. Maverick scientists find it difficult to secure funding, which means that other possible targets or approaches remained relatively unexplored—and drug companies are understandably reluctant to sponsor fishing expeditions with little guarantee of a payoff. "Very influential people were driving this hypothesis," says Davies, and with careers on the line, "there was not enough objectivity or skepticism about that hypothesis."
Still, no one is disputing the importance of anti-amyloid drugs—and ongoing clinical trials, like the DIAN and A4 studies, are intervening earlier in patients who are at a high risk of developing Alzheimer's, but before they're symptomatic. "The only way to know if this is really a dead end is if you take it as far as it can go," says Knopman. "I believe the A4 study is the proper way to test the amyloid hypothesis."
But according to some experts, the latest thinking is that Alzheimer's is triggered by a range of factors, including genetics, poor diet, stress and lack of exercise.
"Alzheimer's is like other chronic age-related diseases and is multi-factorial," says Perry. "Modulating amyloids may have value but other avenues need to be explored."
Catching colds may help protect kids from Covid
A common cold virus causes the immune system to produce T cells that also provide protection against SARS-CoV-2, according to new research. The study, published last month in PNAS, shows that this effect is most pronounced in young children. The finding may help explain why most young people who have been exposed to the cold-causing coronavirus have not developed serious cases of COVID-19.
One curiosity stood out in the early days of the COVID-19 pandemic – why were so few kids getting sick. Generally young children and the elderly are the most vulnerable to disease outbreaks, particularly viral infections, either because their immune systems are not fully developed or they are starting to fail.
But solid information on the new infection was so scarce that many public health officials acted on the precautionary principle, assumed a worst-case scenario, and applied the broadest, most restrictive policies to all people to try to contain the coronavirus SARS-CoV-2.
One early thought was that lockdowns worked and kids (ages 6 months to 17 years) simply were not being exposed to the virus. So it was a shock when data started to come in showing that well over half of them carried antibodies to the virus, indicating exposure without getting sick. That trend grew over time and the latest tracking data from the CDC shows that 96.3 percent of kids in the U.S. now carry those antibodies.
Antibodies are relatively quick and easy to measure, but some scientists are exploring whether the reactions of T cells could serve as a more useful measure of immune protection.
But that couldn't be the whole story because antibody protection fades, sometimes as early as a month after exposure and usually within a year. Additionally, SARS-CoV-2 has been spewing out waves of different variants that were more resistant to antibodies generated by their predecessors. The resistance was so significant that over time the FDA withdrew its emergency use authorization for a handful of monoclonal antibodies with earlier approval to treat the infection because they no longer worked.
Antibodies got most of the attention early on because they are part of the first line response of the immune system. Antibodies can bind to viruses and neutralize them, preventing infection. They are relatively quick and easy to measure and even manufacture, but as SARS-CoV-2 showed us, often viruses can quickly evolve to become more resistant to them. Some scientists are exploring whether the reactions of T cells could serve as a more useful measure of immune protection.
Kids, colds and T cells
T cells are part of the immune system that deals with cells once they have become infected. But working with T cells is much more difficult, takes longer, and is more expensive than working with antibodies. So studies often lags behind on this part of the immune system.
A group of researchers led by Annika Karlsson at the Karolinska Institute in Sweden focuses on T cells targeting virus-infected cells and, unsurprisingly, saw that they can play a role in SARS-CoV-2 infection. Other labs have shown that vaccination and natural exposure to the virus generates different patterns of T cell responses.
The Swedes also looked at another member of the coronavirus family, OC43, which circulates widely and is one of several causes of the common cold. The molecular structure of OC43 is similar to its more deadly cousin SARS-CoV-2. Sometimes a T cell response to one virus can produce a cross-reactive response to a similar protein structure in another virus, meaning that T cells will identify and respond to the two viruses in much the same way. Karlsson looked to see if T cells for OC43 from a wide age range of patients were cross-reactive to SARS-CoV-2.
And that is what they found, as reported in the PNAS study last month; there was cross-reactive activity, but it depended on a person’s age. A subset of a certain type of T cells, called mCD4+,, that recognized various protein parts of the cold-causing virus, OC43, expressed on the surface of an infected cell – also recognized those same protein parts from SARS-CoV-2. The T cell response was lower than that generated by natural exposure to SARS-CoV-2, but it was functional and thus could help limit the severity of COVID-19.
“One of the most politicized aspects of our pandemic response was not accepting that children are so much less at risk for severe disease with COVID-19,” because usually young children are among the most vulnerable to pathogens, says Monica Gandhi, professor of medicine at the University of California San Francisco.
“The cross-reactivity peaked at age six when more than half the people tested have a cross-reactive immune response,” says Karlsson, though their sample is too small to say if this finding applies more broadly across the population. The vast majority of children as young as two years had OC43-specific mCD4+ T cell responses. In adulthood, the functionality of both the OC43-specific and the cross-reactive T cells wane significantly, especially with advanced age.
“Considering that the mortality rate in children is the lowest from ages five to nine, and higher in younger children, our results imply that cross-reactive mCD4+ T cells may have a role in the control of SARS-CoV-2 infection in children,” the authors wrote in their paper.
“One of the most politicized aspects of our pandemic response was not accepting that children are so much less at risk for severe disease with COVID-19,” because usually young children are among the most vulnerable to pathogens, says Monica Gandhi, professor of medicine at the University of California San Francisco and author of the book, Endemic: A Post-Pandemic Playbook, to be released by the Mayo Clinic Press this summer. The immune response of kids to SARS-CoV-2 stood our expectations on their head. “We just haven't seen this before, so knowing the mechanism of protection is really important.”
Why the T cell immune response can fade with age is largely unknown. With some viruses such as measles, a single vaccination or infection generates life-long protection. But respiratory tract infections, like SARS-CoV-2, cause a localized infection - specific to certain organs - and that response tends to be shorter lived than systemic infections that affect the entire body. Karlsson suspects the elderly might be exposed to these localized types of viruses less often. Also, frequent continued exposure to a virus that results in reactivation of the memory T cell pool might eventually result in “a kind of immunosenescence or immune exhaustion that is associated with aging,” Karlsson says. https://leaps.org/scientists-just-started-testing-a-new-class-of-drugs-to-slow-and-even-reverse-aging/particle-3 This fading protection is why older people need to be repeatedly vaccinated against SARS-CoV-2.
Policy implications
Following the numbers on COVID-19 infections and severity over the last three years have shown us that healthy young people without risk factors are not likely to develop serious disease. This latest study points to a mechanism that helps explain why. But the inertia of existing policies remains. How should we adjust policy recommendations based on what we know today?
The World Health Organization (WHO) updated their COVID-19 vaccination guidance on March 28. It calls for a focus on vaccinating and boosting those at risk for developing serious disease. The guidance basically shrugged its shoulders when it came to healthy children and young adults receiving vaccinations and boosters against COVID-19. It said the priority should be to administer the “traditional essential vaccines for children,” such as those that protect against measles, rubella, and mumps.
“As an immunologist and a mother, I think that catching a cold or two when you are a kid and otherwise healthy is not that bad for you. Children have a much lower risk of becoming severely ill with SARS-CoV-2,” says Karlsson. She has followed public health guidance in Sweden, which means that her young children have not been vaccinated, but being older, she has received the vaccine and boosters. Gandhi and her children have been vaccinated, but they do not plan on additional boosters.
The WHO got it right in “concentrating on what matters,” which is getting traditional childhood immunizations back on track after their dramatic decline over the last three years, says Gandhi. Nor is there a need for masking in schools, according to a study from the Catalonia region of Spain. It found “no difference in masking and spread in schools,” particularly since tracking data indicate that nearly all young people have been exposed to SARS-CoV-2.
Both researchers lament that public discussion has overemphasized the quickly fading antibody part of the immune response to SARS-CoV-2 compared with the more durable T cell component. They say developing an efficient measure of T cell response for doctors to use in the clinic would help to monitor immunity in people at risk for severe cases of COVID-19 compared with the current method of toting up potential risk factors.
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on new scientific theories and progress to give you a therapeutic dose of inspiration headed into the weekend.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the stories covered this week:
- The eyes are the windows to the soul - and biological aging?
- What bean genes mean for health and the planet
- This breathing practice could lower levels of tau proteins
- AI beats humans at assessing heart health
- Should you get a nature prescription?