Meet Your Child’s New Nanny: A Robot
Would you leave your small child in the care of a robot for several hours a day? It may sound laughable at first, but think carefully.
"Given the huge amounts of money we pay for childcare, a [robot caregiver] is a very attractive proposition."
Robots that can care for children would be a godsend to many parents, especially the financially strapped. In the U.S., 62 percent of women who gave birth in 2016 worked outside the home, and day care costs are often exorbitant. In California, for instance, the annual cost for day care for a single child averages over $22,000. The price is lower in some states, but it still accounts for a hefty chunk of the typical family's budget.
"We're talking about the Holy Grail of parenting," says Zoltan Istvan, a technology consultant and futurist. "Imagine a robot that could assume 70 percent to 80 percent of the caregiver's role for your child. Given the huge amounts of money we pay for childcare, that's a very attractive proposition."
Both China and Japan are on the leading edge of employing specially designed social robots for the care of children. Due to long work schedules, shifting demographics and China's long-term (but now defunct) one-child policy, both countries have a severe shortage of family caregivers. Enter the iPal, a child-sized humanoid robot with a round head, expressive face and articulated fingers, which can keep children engaged and entertained for hours on end. According to its manufacturer, AvatarMind Robot Technology, iPal is already selling like hotcakes in Asia and is expected to be available in the U.S. within the next year. The standard version of iPal sells for $2,499, and it's not the only robot claimed to be suitable for childcare. Other robots being fine-tuned are Softbank's humanoid models Pepper and NAO, which are also considered to be child-friendly social robots.
iPal talks, dances, plays games, reads stories and plugs into social media and the internet. According to AvatarMind, over time iPal learns your child's likes and dislikes, and can independently learn more about subjects your child is interested in to boost learning. In addition, it will wake your child up in the morning and tell him when it's time to get dressed, brush his teeth or wash his hands. If your child is a diabetic, it will remind her when it's time to check her blood sugar. But iPal isn't just a fancy appliance that mechanically performs these functions; it does so with "personality."
iPal robot interacting with a boy.
The robot has an "emotion management system" that detects your child's emotions and mirrors them (unless your child is sad, and then it tries to cheer him up). But it's not exactly like iPal has the kind of emotion chip long sought by Star Trek's android Data. What it does is emotional simulation--what some would call emotional dishonesty--considering that it doesn't actually feel anything. But research has shown that the lack of authenticity doesn't really matter when it comes to the human response to feigned emotion.
Children, and even adults, tend to respond to "emotional" robots as though they're alive and sentient even when we've seen all the wires and circuit boards that underlie their wizardry. In fact, we're hardwired to respond to them as though they are human beings in a real relationship with us.
The question is whether the relationships we develop with robots causes social maladaptation, especially among the most vulnerable among us—young children just learning how to connect and interact with others. Could a robot in fact come close to providing the authentic back-and-forth that helps children develop empathy, reciprocity, and self-esteem? Also, could steady engagement with a robot nanny diminish precious time needed for real family bonding?
It depends on whom you ask.
Because iPal is voice-activated, it frees children to learn by interacting in a way that's more natural than interacting with traditional toys, says Dr. Daniel Xiong, Co-founder and Chief Technology Officer at AvatarMind. "iPal is like a "real" family member with you whenever you need it," he says.
Xiong doesn't put a time limit on how long a child should interact with iPal on a daily basis. He sees the relationship between the child and the robot as healthy, though he admits that the technology needs to advance substantially before iPal could take the place of a human babysitter.
It's no coincidence that many toymakers and manufacturers are designing cute robots that look and behave like real children or animals, says Sherry Turkle, a Professor of Social Studies and Science at MIT. "When they make eye contact and gesture toward us, they predispose us to view them as thinking and caring," she has written in The Washington Post. "They are designed to be cute, to provide a nurturing response" from the child. "And when it comes to sociable AI, nurturance is the killer app: We nurture what we love, and we love what we nurture."
What are we saying to children about their importance to us when we're willing to outsource their care to a robot?
The problem is that we get lulled into thinking that we're in an actual relationship, when a robot can't possibly love us back. If adults have these vulnerabilities, what might such lopsided relationships do to the emotional development of a small child? Turkle notes that while we tend to ascribe a mind and emotions to a socially interactive robot, "Simulated thinking may be thinking, but simulated feeling is never feeling, and simulated love is never love."
Still, is active, playful engagement with a robot for a few hours a day any more harmful than several hours in front of a TV or with an iPad? Some, like Xiong, regard interacting with a robot as better than mere passive entertainment. iPal's manufacturers say that their robot can't replace parents or teachers and is best used by three- to eight-year-olds after school, while they wait for their parents to get off of work. But as robots become ever more sophisticated, they're expected to become more and more captivating, and to perform more of the tasks of day-to-day care.
Some studies, performed by Turkle and fellow MIT colleague Cynthia Breazeal, have revealed a darker side to child-robot interaction. Turkle has reported extensively on these studies in The Washington Post and in her 2011 book, Alone Together: Why We Expect More from Technology and Less from Each Other. Most children love robots, but some act out their inner bully on the hapless machines, hitting and kicking them and otherwise trying to hurt them. The trouble is that the robot can't fight back, teaching children that they can bully and abuse without consequences. Such harmful behavior could carry over into the child's human relationships.
And it turns out that communicative machines don't actually teach kids good communication skills. It's well known that parent-child communication in the first three years of life sets the stage for a child's intellectual and academic success. Verbal back-and-forth with parents and caregivers is like food for a child's growing brain. One article published in JAMA Pediatrics showed that babies who played with electronic toys—like the popular robot dog AIBO—show a decrease in both the quantity and quality of their language skills.
Anna V. Sosa of the Child Speech and Language Lab at Northern Arizona University studied 26 ten- to 16-month-old infants to compare the growth of their language skills after they played with three types of toys: Electronic toys like a baby laptop and talking farm; traditional toys like wooden puzzles and building blocks; and books read aloud by their parents.
The play that produced the most growth in verbal ability was having books read to them, followed by play with traditional toys. Language gains after playing with electronic toys came dead last. This form of play involved the least use of adult words, the least conversational turn-taking with parents, and the least verbalizations from the children. While the study sample was small, it's not hard to extrapolate that no electronic toy or even more abled robot could supply the intimate responsiveness of a parent reading stories to a child, explaining new words, answering the child's questions, and modeling the kind of back-and-forth interaction that promotes empathy and reciprocity in human relationships.
Most experts acknowledge that robots can be valuable educational tools, but they can't make a child feel truly loved, validated, and valued.
Research suggests that the main problem of leaving children in the care of robots on a regular basis is the risk of their stunted, unhealthy emotional development. In Alone Together, Turkle asks: What are we saying to children about their importance to us when we're willing to outsource their care to a robot? A child might be superficially entertained by the robot while her self-esteem is systematically undermined.
Two of the most vocal critics of robot nannies are researchers at the University of Sheffield in the U.K., Noel and Amanda Sharkey. In an article published in the journal Interaction Studies, they claim that the overuse of childcare robots could have serious consequences for the psychological and emotional wellbeing of children.
They acknowledge that limited use of robots can have positive effects like keeping a child safe from physical harm, allowing remote monitoring and supervision by parents, keeping a child entertained, and stimulating an interest in science and engineering. But the Sharkeys see the overuse of robots as a source of emotional alienation between parents and children. Just regularly plopping a child down with a robot for hours of interaction could be a form of neglect that panders to busy parents at the cost of a child's emotional development.
Robots, the Sharkeys argue, prey upon a child's natural tendency to anthropomorphize, which sucks them into a pseudo-relationship with a machine that can never return their affection. This can be seen as a form of emotional exploitation—a machine that promises connection but can never truly deliver. Furthermore, as robots develop more intimate skills such as bathing, feeding and changing diapers, children will lose out on some of the most fundamental and precious bonding activities with their parents.
Critics say that children's natural ability to bond is prime territory for exploitation by toy and robot manufacturers, who ultimately have a commercial agenda. The Sharkeys noted one study in which a state-of-the-art robot was employed in a daycare center. The ten- to 20-month-old children bonded more deeply with the robot than with a teddy bear. It's not hard to see that starting the robot-bonding process early in life is good for robot business, as babies and toddlers graduate to increasingly sophisticated machines.
"It is possible that exclusive or near exclusive care of a child by a robot could result in cognitive and linguistic impairments," say the Sharkeys. They cite the danger of a child developing what is called in psychology a pathological attachment disorder. Attachment disorders occur when parents are unpredictable or neglectful in their emotional responsiveness. The resulting shaky bond interferes with a child's ability to feel trust, pleasure, safety, and comfort in the presence of the parent. Unhealthy patterns of attachment include "insecure attachment," a form of anxiety that arises when a child cannot trust his caregiver with meeting his emotional needs. Children with attachment disorders may anxiously avoid attachments and may not be able to experience empathy, the cornerstone of relationships. Such patterns can follow a child throughout life and infect every other relationship they have.
An example of the inadequacy of robot nannies rests on the pre-programmed emotional responses they have in their repertoires. They're designed to detect and mirror a child's emotions and do things like play a child's favorite song when he's crying or in distress. But such a response could be the height of insensitivity. It discounts and belittles what may be a child's authentic response to an upsetting turn of events, like a scraped knee from a fall. A robot playing a catchy jingle is a far cry from having Mom clean and dress the wound, and perhaps more importantly, kiss it and make it better.
Most experts acknowledge that robots can be valuable educational tools. But they can't make a child feel truly loved, validated, and valued. That's the job of parents, and when parents abdicate this responsibility, it's not only the child that misses out on one of life's most profound experiences.
So consider buying a robot to entertain and educate your little one—just make sure you're close by for the true bonding opportunities that arrive so fast and last so fleetingly in the life of a child.
A new injection is helping stave off RSV this season
In November 2021, Mickayla Wininger’s then one-month-old son, Malcolm, endured a terrifying bout with RSV, the respiratory syncytial (sin-SISH-uhl) virus—a common ailment that affects all age groups. Most people recover from mild, cold-like symptoms in a week or two, but RSV can be life-threatening in others, particularly infants.
Wininger, who lives in southern Illinois, was dressing Malcolm for bed when she noticed what seemed to be a minor irregularity with this breathing. She and her fiancé, Gavin McCullough, planned to take him to the hospital the next day. The matter became urgent when, in the morning, the boy’s breathing appeared to have stopped.
After they dialed 911, Malcolm started breathing again, but he ended up being hospitalized three times for RSV and defects in his heart. Eventually, he recovered fully from RSV, but “it was our worst nightmare coming to life,” Wininger recalled.
It’s a scenario that the federal government is taking steps to prevent. In July, the Food and Drug Administration approved a single-dose, long-acting injection to protect babies and toddlers. The injection, called Beyfortus, or nirsevimab, became available this October. It reduces the incidence of RSV in pre-term babies and other infants for their first RSV season. Children at highest risk for severe RSV are those who were born prematurely and have either chronic lung disease of prematurity or congenital heart disease. In those cases, RSV can progress to lower respiratory tract diseases such as pneumonia and bronchiolitis, or swelling of the lung’s small airway passages.
Each year, RSV is responsible for 2.1 million outpatient visits among children younger than five-years-old, 58,000 to 80,000 hospitalizations in this age group, and between 100 and 300 deaths, according to the Centers for Disease Control and Prevention. Transmitted through close contact with an infected person, the virus circulates on a seasonal basis in most regions of the country, typically emerging in the fall and peaking in the winter.
In August, however, the CDC issued a health advisory on a late-summer surge in severe cases of RSV among young children in Florida and Georgia. The agency predicts "increased RSV activity spreading north and west over the following two to three months.”
Infants are generally more susceptible to RSV than older people because their airways are very small, and their mechanisms to clear these passages are underdeveloped. RSV also causes mucus production and inflammation, which is more of a problem when the airway is smaller, said Jennifer Duchon, an associate professor of newborn medicine and pediatrics in the Icahn School of Medicine at Mount Sinai in New York.
In 2021 and 2022, RSV cases spiked, sending many to emergency departments. “RSV can cause serious disease in infants and some children and results in a large number of emergency department and physician office visits each year,” John Farley, director of the Office of Infectious Diseases in the FDA’s Center for Drug Evaluation and Research, said in a news release announcing the approval of the RSV drug. The decision “addresses the great need for products to help reduce the impact of RSV disease on children, families and the health care system.”
Sean O’Leary, chair of the committee on infectious diseases for the American Academy of Pediatrics, says that “we’ve never had a product like this for routine use in children, so this is very exciting news.” It is recommended for all kids under eight months old for their first RSV season. “I would encourage nirsevimab for all eligible children when it becomes available,” O’Leary said.
For those children at elevated risk of severe RSV and between the ages of 8 and 19 months, the CDC recommends one dose in their second RSV season.
The drug will be “really helpful to keep babies healthy and out of the hospital,” said O’Leary, a professor of pediatrics at the University of Colorado Anschutz Medical Campus/Children’s Hospital Colorado in Denver.
An antiviral drug called Synagis (palivizumab) has been an option to prevent serious RSV illness in high-risk infants since it was approved by the FDA in 1998. The injection must be given monthly during RSV season. However, its use is limited to “certain children considered at high risk for complications, does not help cure or treat children already suffering from serious RSV disease, and cannot prevent RSV infection,” according to the National Foundation for Infectious Diseases.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants.
Both nirsevimab and palivizumab are monoclonal antibodies that act against RSV. Monoclonal antibodies are lab-made proteins that mimic the immune system’s ability to fight off harmful pathogens such as viruses. A single intramuscular injection of nirsevimab preceding or during RSV season may provide protection.
The strategy with the new monoclonal antibody is “to extend protection to healthy infants who nonetheless are at risk because of their age, as well as infants with additional medical risk factors,” said Philippa Gordon, a pediatrician and infectious disease specialist in Brooklyn, New York, and medical adviser to Park Slope Parents, an online community support group.
No specific preventive measure is needed for older and healthier kids because they will develop active immunity, which is more durable. Meanwhile, older adults, who are also vulnerable to RSV, can receive one of two new vaccines. So can pregnant women, who pass on immunity to the fetus, Gordon said.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants, “nor is there any treatment other than giving oxygen or supportive care,” said Stanley Spinner, chief medical officer and vice president of Texas Children’s Pediatrics and Texas Children’s Urgent Care.
As with any virus, washing hands frequently and keeping infants and children away from sick people are the best defenses, Duchon said. This approach isn’t foolproof because viruses can run rampant in daycare centers, schools and parents’ workplaces, she added.
Mickayla Wininger, Malcolm’s mother, insists that family and friends wear masks, wash their hands and use hand sanitizer when they’re around her daughter and two sons. She doesn’t allow them to kiss or touch the children. Some people take it personally, but she would rather be safe than sorry.
Wininger recalls the severe anxiety caused by Malcolm's ordeal with RSV. After returning with her infant from his hospital stays, she was terrified to go to sleep. “My fiancé and I would trade shifts, so that someone was watching over our son 24 hours a day,” she said. “I was doing a night shift, so I would take caffeine pills to try and keep myself awake and would end up crashing early hours in the morning and wake up frantically thinking something happened to my son.”
Two years later, her anxiety has become more manageable, and Malcolm is doing well. “He is thriving now,” Wininger said. He recently had his second birthday and "is just the spunkiest boy you will ever meet. He looked death straight in the eyes and fought to be here today.”
Story by Big Think
For most of history, artificial intelligence (AI) has been relegated almost entirely to the realm of science fiction. Then, in late 2022, it burst into reality — seemingly out of nowhere — with the popular launch of ChatGPT, the generative AI chatbot that solves tricky problems, designs rockets, has deep conversations with users, and even aces the Bar exam.
But the truth is that before ChatGPT nabbed the public’s attention, AI was already here, and it was doing more important things than writing essays for lazy college students. Case in point: It was key to saving the lives of tens of millions of people.
AI-designed mRNA vaccines
As Dave Johnson, chief data and AI officer at Moderna, told MIT Technology Review‘s In Machines We Trust podcast in 2022, AI was integral to creating the company’s highly effective mRNA vaccine against COVID. Moderna and Pfizer/BioNTech’s mRNA vaccines collectively saved between 15 and 20 million lives, according to one estimate from 2022.
Johnson described how AI was hard at work at Moderna, well before COVID arose to infect billions. The pharmaceutical company focuses on finding mRNA therapies to fight off infectious disease, treat cancer, or thwart genetic illness, among other medical applications. Messenger RNA molecules are essentially molecular instructions for cells that tell them how to create specific proteins, which do everything from fighting infection, to catalyzing reactions, to relaying cellular messages.
Johnson and his team put AI and automated robots to work making lots of different mRNAs for scientists to experiment with. Moderna quickly went from making about 30 per month to more than one thousand. They then created AI algorithms to optimize mRNA to maximize protein production in the body — more bang for the biological buck.
For Johnson and his team’s next trick, they used AI to automate science, itself. Once Moderna’s scientists have an mRNA to experiment with, they do pre-clinical tests in the lab. They then pore over reams of data to see which mRNAs could progress to the next stage: animal trials. This process is long, repetitive, and soul-sucking — ill-suited to a creative scientist but great for a mindless AI algorithm. With scientists’ input, models were made to automate this tedious process.
“We don’t think about AI in the context of replacing humans,” says Dave Johnson, chief data and AI officer at Moderna. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
All these AI systems were in put in place over the past decade. Then COVID showed up. So when the genome sequence of the coronavirus was made public in January 2020, Moderna was off to the races pumping out and testing mRNAs that would tell cells how to manufacture the coronavirus’s spike protein so that the body’s immune system would recognize and destroy it. Within 42 days, the company had an mRNA vaccine ready to be tested in humans. It eventually went into hundreds of millions of arms.
Biotech harnesses the power of AI
Moderna is now turning its attention to other ailments that could be solved with mRNA, and the company is continuing to lean on AI. Scientists are still coming to Johnson with automation requests, which he happily obliges.
“We don’t think about AI in the context of replacing humans,” he told the Me, Myself, and AI podcast. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
Moderna, which was founded as a “digital biotech,” is undoubtedly the poster child of AI use in mRNA vaccines. Moderna recently signed a deal with IBM to use the company’s quantum computers as well as its proprietary generative AI, MoLFormer.
Moderna’s success is encouraging other companies to follow its example. In January, BioNTech, which partnered with Pfizer to make the other highly effective mRNA vaccine against COVID, acquired the company InstaDeep for $440 million to implement its machine learning AI across its mRNA medicine platform. And in May, Chinese technology giant Baidu announced an AI tool that designs super-optimized mRNA sequences in minutes. A nearly countless number of mRNA molecules can code for the same protein, but some are more stable and result in the production of more proteins. Baidu’s AI, called “LinearDesign,” finds these mRNAs. The company licensed the tool to French pharmaceutical company Sanofi.
Writing in the journal Accounts of Chemical Research in late 2021, Sebastian M. Castillo-Hair and Georg Seelig, computer engineers who focus on synthetic biology at the University of Washington, forecast that AI machine learning models will further accelerate the biotechnology research process, putting mRNA medicine into overdrive to the benefit of all.
This article originally appeared on Big Think, home of the brightest minds and biggest ideas of all time.