Michio Kaku Talks Life on Mars, Genetic Engineering, and Immortality
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Today is the release of THE FUTURE OF HUMANITY, the latest book by the world-renowned physicist Dr. Michio Kaku. In it, he explores the astonishing technologies that could propel us to live on other planets and even to live forever. LeapsMag Editor-in-Chief Kira Peikoff recently chatted with Dr. Kaku about some of the ethical implications we need to consider as we hurtle toward our destiny among the stars. Our interview has been edited and condensed for clarity.
"Technology is like a double-edged sword. The question is, who wields it?"
A big part of your book discusses living on Mars, and you mention that nanotech, biotech and AI could help us do so in the next 100 years. But you also note that efforts to make the Red Planet habitable could backfire, such as using genetic engineering to produce an ideal fertilizer, which could make one life form push out all the others. How should we judge when a powerful new technology is ready to be tested?
Technology is like a double-edged sword. One side can cut against ignorance, poverty, disease. But the other side can cut against people. The question is, who wields the sword? It has to be wielded by people's interests. We have to look not at the needs of the military or corporations, but society as a whole, and we have to realize that every technology, not just the ones I mentioned in the book, has a dark side as well as a positive side.
On the positive side, you could terraform Mars using genetic engineering to create algae, plants that could thrive in the Martian atmosphere, and a self-sustaining agriculture where we could raise food crops. However, it has to be done carefully, because we don't want to have it overrun Mars, just like we have certain plants that overrun the natural environment here on Earth. So we have to do it slowly. It cannot be done all of a sudden in a crash program. We have to see what happens if we begin to terraform stretches of Martian landscape.
Elon Musk of SpaceX, who has pioneered much of these technologies, has stated that we can jumpstart terraforming Mars by detonating hydrogen bombs over the polar ice caps. Later he had to qualify that by saying that they are airbursts, not ground bursts, to minimize radiation. Other people have said, we don't know what a nuclear weapon would do. Would it destabilize Mars? Would it open cracks in the ice caps? So we have to think things through, not just make proposals. Another proposal is to use silver mirrors in space to reflect sunlight down to melt the ice caps, and that would be more environmentally friendly than using hydrogen bombs.
"Our grandkids, when they hit the age of 30, they may just decide to stop aging, and live at age 30 for many decades to come."
As far as colonizing Mars, you also talk about technologies that could potentially help us end aging, but you note that this could exacerbate overpopulation and an exodus from Earth -- the double-edged sword again. What's your personal view on whether anti-aging research should be pursued?
Anti-aging research is accelerating because of the human genome. We're now able to map the genomes of old people, compare them with the genomes of young people, and we can see where aging takes place. For example, in a car, aging takes place in the engine, because that's where we have moving parts and combustion. Where do we find that in a cell? The mitochondria, and so we do see a concentration of error build-up in the mitochondria, and we can envision one day repairing the mistakes, which could in turn increase our life span. Also we're discovering new enzymes like telomerase which allow us to stop the clock. So it's conceivable, I think not for my generation, but for the coming generations, perhaps our grandkids, when they hit the age of 30, they may just decide to stop aging, and live at age 30 for many decades to come.
The other byproduct of this of course is overpopulation. That's a social problem, but realize in places like Japan, we have the opposite problem, under-population, because the birth rate has fallen way below the replacement level, people live too long, and there's very little immigration there. Europe is next. So we have this bizarre situation where some places like Sub-Saharan Africa are still expanding, but other places we're going to see a contraction. Overall, the population will continue to rise, but it's going to slow down. Instead of this exponential curve that many people see in the media, it's going to be shaped like an "S" that rises rapidly and then seals off. The UN is now beginning to entertain the possibility that the population of the Earth may seal off sometime by the end of the century--that we'll hit a steady state.
"In the future, that composite image may be holographic, with all your videotapes, your memories, to create a near approximation of who you are, and centuries from now, you may have digital immortality."
Later in the book, you talk about achieving immortality through storing your digital consciousness, uploading your brain to a computer. Many people today find that notion bizarre or even repulsive, but you also wisely note that "what seems unethical or even immoral today might be ordinary or mundane in the future." What do you think is the key to bridging the gap between controversial breakthroughs and public acceptance?
I imagine that if someone from the Middle Ages, who is fresh from burning witches and heretics and torturing non-believers, were to wind up today in our society, they might go crazy. They might think all of society is a product of the Devil, because attitudes toward morality change. So we humans today cannot dictate what morality will be like 100 years from now. For example, test tube babies. When Louise Brown (the first test tube baby) was first born, the Catholic Church denounced it. Now, today, your wife, husband, you may be a test tube baby and we don't even blink.
There's a Silicon Valley company today that will take what is known about you on the Internet, your credit card transactions, your emails, and create a composite image of you. In the future, that composite image may be holographic, with all your videotapes, your memories, to create a near approximation of who you are, and centuries from now, you may have digital immortality—your memories, your sensations, will be recorded accurately, and an avatar will recreate it. Like for example, I wouldn't mind talking to Einstein. I wouldn't mind sitting down with the guy and having a great conversation about the universe.
And the Connectome Project, by the end of the century, will map the entire brain--that's every neuron--just like the genome project has mapped every gene. And we live with it, we don't even think twice about the fact that our genome exists. In the future, our connectome will also exist. And the connectome can reproduce your thoughts, your dreams, your sensations. We'll just live with that fact; it will be considered ordinary.
"A hundred years from now, we may want to merge with some of these technologies, rather than have to compete with robots."
Wow. In such a "post-human" era, our bodies could be replaced by robots or maintained by genetic engineering. Once these technologies become commercially available, do you think people should have the freedom to make changes or enhancements to themselves?
I think there should be laws passed at a certain point to prevent parents from going crazy trying to genetically engineer their child. Once we isolate the genes for studying, for good behavior, things like that, we may be tempted to tinker with it. I think a certain amount of tinkering is fine, but we don't want to let it get out of control. There has to be limits.
Also, we are in competition with robots of the future. A hundred years from now, robots are going to become very intelligent. Some people think they're going to take over. My attitude is that a hundred years from now, we may want to merge with some of these technologies, rather than have to compete with robots. But we're not going to look like some freaky robot because we're genetically hardwired to look good to the opposite sex, to look good to our peers. Hundreds of thousands of years ago, and hundreds of thousands of years into the future, we'll still look the same. We'll genetically modify ourselves a little bit, but we'll basically look the same.
That's an interesting point. It's amazing how fast technology is moving overall. Like at one point in the book, you mention that primates had never been cloned, but a few weeks ago, news broke that this just happened in China. Do you think we should slow down the dramatic pace of acceleration and focus on the ethical considerations, or should we still move full-steam ahead?
Well, CRISPR technology has accelerated us more than we previously thought. In the past, to tinker with genes, you had to cut and splice, and it was a lot of guesswork and trial and error. Now, you can zero in on the cutting process and streamline it, so cutting and splicing genes becomes much more accurate, and you can edit them just like you edit a book. Within the field of bioengineering, they have set up their own conferences to begin to police themselves into figuring out which domains are ethically dangerous and which areas can provide benefits for humanity, because they realize that this technology can go a little bit too fast.
"Where does truth come from? Truth comes from interaction with incorrect ideas."
You cannot recall a life form. Once a life form is created, it reproduces. That's what life does. If it reproduces outside the laboratory, it could take over. So we want to make sure that we don't have to recall a life form, like you would recall a Ford or a Chevrolet. Eventually governments may have to slow down the pace because it's moving very rapidly.
Lastly, you talk about the importance of democratic debate to resolve how controversial technology should be used. How can science-minded people bring the rest of society into these conversations, so that as much of society as possible is represented?
It's a question of where does truth come from? Truth comes from interaction with incorrect ideas--the collision of truth and untruth, rumors and fact. It doesn't come from a machine where you put in a quarter, and out comes the answer. It requires democratic debate. And that's where the Internet comes in, that's where the media comes in, that's where this interview comes in. You want to stimulate and educate the people so they know the dangers and promises of technology, and then engage with them about the moral implications, because these things are going to affect every aspect of our life in the future.
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
DNA- and RNA-based electronic implants may revolutionize healthcare
Implantable electronic devices can significantly improve patients’ quality of life. A pacemaker can encourage the heart to beat more regularly. A neural implant, usually placed at the back of the skull, can help brain function and encourage higher neural activity. Current research on neural implants finds them helpful to patients with Parkinson’s disease, vision loss, hearing loss, and other nerve damage problems. Several of these implants, such as Elon Musk’s Neuralink, have already been approved by the FDA for human use.
Yet, pacemakers, neural implants, and other such electronic devices are not without problems. They require constant electricity, limited through batteries that need replacements. They also cause scarring. “The problem with doing this with electronics is that scar tissue forms,” explains Kate Adamala, an assistant professor of cell biology at the University of Minnesota Twin Cities. “Anytime you have something hard interacting with something soft [like muscle, skin, or tissue], the soft thing will scar. That's why there are no long-term neural implants right now.” To overcome these challenges, scientists are turning to biocomputing processes that use organic materials like DNA and RNA. Other promised benefits include “diagnostics and possibly therapeutic action, operating as nanorobots in living organisms,” writes Evgeny Katz, a professor of bioelectronics at Clarkson University, in his book DNA- And RNA-Based Computing Systems.
While a computer gives these inputs in binary code or "bits," such as a 0 or 1, biocomputing uses DNA strands as inputs, whether double or single-stranded, and often uses fluorescent RNA as an output.
Adamala’s research focuses on developing such biocomputing systems using DNA, RNA, proteins, and lipids. Using these molecules in the biocomputing systems allows the latter to be biocompatible with the human body, resulting in a natural healing process. In a recent Nature Communications study, Adamala and her team created a new biocomputing platform called TRUMPET (Transcriptional RNA Universal Multi-Purpose GatE PlaTform) which acts like a DNA-powered computer chip. “These biological systems can heal if you design them correctly,” adds Adamala. “So you can imagine a computer that will eventually heal itself.”
The basics of biocomputing
Biocomputing and regular computing have many similarities. Like regular computing, biocomputing works by running information through a series of gates, usually logic gates. A logic gate works as a fork in the road for an electronic circuit. The input will travel one way or another, giving two different outputs. An example logic gate is the AND gate, which has two inputs (A and B) and two different results. If both A and B are 1, the AND gate output will be 1. If only A is 1 and B is 0, the output will be 0 and vice versa. If both A and B are 0, the result will be 0. While a computer gives these inputs in binary code or "bits," such as a 0 or 1, biocomputing uses DNA strands as inputs, whether double or single-stranded, and often uses fluorescent RNA as an output. In this case, the DNA enters the logic gate as a single or double strand.
If the DNA is double-stranded, the system “digests” the DNA or destroys it, which results in non-fluorescence or “0” output. Conversely, if the DNA is single-stranded, it won’t be digested and instead will be copied by several enzymes in the biocomputing system, resulting in fluorescent RNA or a “1” output. And the output for this type of binary system can be expanded beyond fluorescence or not. For example, a “1” output might be the production of the enzyme insulin, while a “0” may be that no insulin is produced. “This kind of synergy between biology and computation is the essence of biocomputing,” says Stephanie Forrest, a professor and the director of the Biodesign Center for Biocomputing, Security and Society at Arizona State University.
Biocomputing circles are made of DNA, RNA, proteins and even bacteria.
Evgeny Katz
The TRUMPET’s promise
Depending on whether the biocomputing system is placed directly inside a cell within the human body, or run in a test-tube, different environmental factors play a role. When an output is produced inside a cell, the cell's natural processes can amplify this output (for example, a specific protein or DNA strand), creating a solid signal. However, these cells can also be very leaky. “You want the cells to do the thing you ask them to do before they finish whatever their businesses, which is to grow, replicate, metabolize,” Adamala explains. “However, often the gate may be triggered without the right inputs, creating a false positive signal. So that's why natural logic gates are often leaky." While biocomputing outside a cell in a test tube can allow for tighter control over the logic gates, the outputs or signals cannot be amplified by a cell and are less potent.
TRUMPET, which is smaller than a cell, taps into both cellular and non-cellular biocomputing benefits. “At its core, it is a nonliving logic gate system,” Adamala states, “It's a DNA-based logic gate system. But because we use enzymes, and the readout is enzymatic [where an enzyme replicates the fluorescent RNA], we end up with signal amplification." This readout means that the output from the TRUMPET system, a fluorescent RNA strand, can be replicated by nearby enzymes in the platform, making the light signal stronger. "So it combines the best of both worlds,” Adamala adds.
These organic-based systems could detect cancer cells or low insulin levels inside a patient’s body.
The TRUMPET biocomputing process is relatively straightforward. “If the DNA [input] shows up as single-stranded, it will not be digested [by the logic gate], and you get this nice fluorescent output as the RNA is made from the single-stranded DNA, and that's a 1,” Adamala explains. "And if the DNA input is double-stranded, it gets digested by the enzymes in the logic gate, and there is no RNA created from the DNA, so there is no fluorescence, and the output is 0." On the story's leading image above, if the tube is "lit" with a purple color, that is a binary 1 signal for computing. If it's "off" it is a 0.
While still in research, TRUMPET and other biocomputing systems promise significant benefits to personalized healthcare and medicine. These organic-based systems could detect cancer cells or low insulin levels inside a patient’s body. The study’s lead author and graduate student Judee Sharon is already beginning to research TRUMPET's ability for earlier cancer diagnoses. Because the inputs for TRUMPET are single or double-stranded DNA, any mutated or cancerous DNA could theoretically be detected from the platform through the biocomputing process. Theoretically, devices like TRUMPET could be used to detect cancer and other diseases earlier.
Adamala sees TRUMPET not only as a detection system but also as a potential cancer drug delivery system. “Ideally, you would like the drug only to turn on when it senses the presence of a cancer cell. And that's how we use the logic gates, which work in response to inputs like cancerous DNA. Then the output can be the production of a small molecule or the release of a small molecule that can then go and kill what needs killing, in this case, a cancer cell. So we would like to develop applications that use this technology to control the logic gate response of a drug’s delivery to a cell.”
Although platforms like TRUMPET are making progress, a lot more work must be done before they can be used commercially. “The process of translating mechanisms and architecture from biology to computing and vice versa is still an art rather than a science,” says Forrest. “It requires deep computer science and biology knowledge,” she adds. “Some people have compared interdisciplinary science to fusion restaurants—not all combinations are successful, but when they are, the results are remarkable.”
In today’s podcast episode, Leaps.org Deputy Editor Lina Zeldovich speaks about the health and ecological benefits of farming crickets for human consumption with Bicky Nguyen, who joins Lina from Vietnam. Bicky and her business partner Nam Dang operate an insect farm named CricketOne. Motivated by the idea of sustainable and healthy protein production, they started their unconventional endeavor a few years ago, despite numerous naysayers who didn’t believe that humans would ever consider munching on bugs.
Yet, making creepy crawlers part of our diet offers many health and planetary advantages. Food production needs to match the rise in global population, estimated to reach 10 billion by 2050. One challenge is that some of our current practices are inefficient, polluting and wasteful. According to nonprofit EarthSave.org, it takes 2,500 gallons of water, 12 pounds of grain, 35 pounds of topsoil and the energy equivalent of one gallon of gasoline to produce one pound of feedlot beef, although exact statistics vary between sources.
Meanwhile, insects are easy to grow, high on protein and low on fat. When roasted with salt, they make crunchy snacks. When chopped up, they transform into delicious pâtes, says Bicky, who invents her own cricket recipes and serves them at industry and public events. Maybe that’s why some research predicts that edible insects market may grow to almost $10 billion by 2030. Tune in for a delectable chat on this alternative and sustainable protein.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Further reading:
More info on Bicky Nguyen
https://yseali.fulbright.edu.vn/en/faculty/bicky-n...
The environmental footprint of beef production
https://www.earthsave.org/environment.htm
https://www.watercalculator.org/news/articles/beef-king-big-water-footprints/
https://www.frontiersin.org/articles/10.3389/fsufs.2019.00005/full
https://ourworldindata.org/carbon-footprint-food-methane
Insect farming as a source of sustainable protein
https://www.insectgourmet.com/insect-farming-growing-bugs-for-protein/
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/insect-farming
Cricket flour is taking the world by storm
https://www.cricketflours.com/
https://talk-commerce.com/blog/what-brands-use-cricket-flour-and-why/
Lina Zeldovich has written about science, medicine and technology for Popular Science, Smithsonian, National Geographic, Scientific American, Reader’s Digest, the New York Times and other major national and international publications. A Columbia J-School alumna, she has won several awards for her stories, including the ASJA Crisis Coverage Award for Covid reporting, and has been a contributing editor at Nautilus Magazine. In 2021, Zeldovich released her first book, The Other Dark Matter, published by the University of Chicago Press, about the science and business of turning waste into wealth and health. You can find her on http://linazeldovich.com/ and @linazeldovich.