The Inside Story of Two Young Scientists Who Helped Make Moderna's Covid Vaccine Possible
In early 2020, Moderna Inc. was a barely-known biotechnology company with an unproven approach. It wanted to produce messenger RNA molecules to carry instructions into the body, teaching it to ward off disease. Experts doubted the Boston-based company would meet success.
Today, Moderna is a pharmaceutical power thanks to its success developing an effective Covid-19 vaccine. The company is worth $124 billion, more than giants including GlaxoSmithKline and Sanofi, and evidence has emerged that Moderna's shots are more protective than those produced by Pfizer-BioNTech and other vaccine makers. Pressure is building on the company to deliver more of its doses to people around the world, especially in poorer countries, and Moderna is working on vaccines against other pathogens, including Zika, influenza and cytomegalovirus.
But Moderna encountered such difficulties over the course of its eleven-year history that some executives worried it wouldn't survive. Two unlikely scientists helped save the company. Their breakthroughs paved the way for Moderna's Covid-19 shots but their work has never been publicized nor have their contributions been properly appreciated.
Derrick Rossi, a scientist at MIT, and Noubar Afeyan, a Cambridge-based investor, launched Moderna in September 2010. Their idea was to create mRNA molecules capable of delivering instructions to the body's cells, directing them to make proteins to heal ailments and cure disease. Need a statin, immunosuppressive, or other drug or vaccine? Just use mRNA to send a message to the body's cells to produce it. Rossi and Afeyan were convinced injecting mRNA into the body could turn it into its own laboratory, generating specific medications or vaccines as needed.
At the time, the notion that one might be able to teach the body to make proteins bordered on heresy. Everyone knew mRNA was unstable and set off the body's immune system on its way into cells. But in the late 2000's, two scientists at the University of Pennsylvania, Katalin Karikó and Drew Weissman, had figured out how to modify mRNA's chemical building blocks so the molecule could escape the notice of the immune system and enter the cell. Rossi and Afeyan couldn't convince the University of Pennsylvania to license Karikó and Weissman's patent, however, stymying Moderna's early ambitions. At the same time, the Penn scientists' technique seemed more applicable to an academic lab than a biotech company that needed to produce drugs or shots consistently and in bulk. Rossi and Afeyan's new company needed their own solution to help mRNA evade the body's defenses.
Some of Moderna's founders doubted Schrum could find success and they worried if their venture was doomed from the start.
The Scientist Who Modified mRNA: Jason Schrum
In 2010, Afeyan's firm subleased laboratory space in the basement of another Cambridge biotech company to begin scientific work. Afeyan chose a young scientist on his staff, Jason Schrum, to be Moderna's first employee, charging him with getting mRNA into cells without relying on Karikó and Weissman's solutions.
Schrum seemed well suited for the task. Months earlier, he had received a PhD in biological chemistry at Harvard University, where he had focused on nucleotide chemistry. Schrum even had the look of someone who might do big things. The baby-faced twenty-eight-year-old favored a relaxed, start-up look: khakis, button-downs, and Converse All-Stars.
Schrum felt immediate strain, however. He hadn't told anyone, but he was dealing with intense pain in his hands and joints, a condition that later would be diagnosed as degenerative arthritis. Soon Schrum couldn't bend two fingers on his left hand, making lab work difficult. He joined a drug trial, but the medicine proved useless. Schrum tried corticosteroid injections and anti-inflammatory drugs, but his left hand ached, restricting his experiments.
"It just wasn't useful," Schrum says, referring to his tender hand.*
He persisted, nonetheless. Each day in the fall of 2010, Schrum walked through double air-locked doors into a sterile "clean room" before entering a basement laboratory, in the bowels of an office in Cambridge's Kendall Square neighborhood, where he worked deep into the night. Schrum searched for potential modifications of mRNA nucleosides, hoping they might enable the molecule to produce proteins. Like all such rooms, there were no windows, so Schrum had to check a clock to know if it was day or night. A colleague came to visit once in a while, but most of the time, Schrum was alone.
Some of Moderna's founders doubted Schrum could find success and they worried if their venture was doomed from the start. An established MIT scientist turned down a job with the start-up to join pharmaceutical giant Novartis, dubious of Moderna's approach. Colleagues wondered if mRNA could produce proteins, at least on a consistent basis.
As Schrum began testing the modifications in January 2011, he made an unexpected discovery. Karikó and Weissman saw that by turned one of the building blocks for mRNA, a ribonucleoside called uridine, into a slightly different form called pseudouridine, the cell's immune system ignored the mRNA and the molecule avoided an immune response. After a series of experiments in the basement lab, Schrum discovered that a variant of pseudouridine called N1- methyl-pseudouridine did an even better job reducing the cell's innate immune response. Schrum's nucleoside switch enabled even higher protein production than Karikó and Weissman had generated, and Schrum's mRNAs lasted longer than either unmodified molecules or the modified mRNA the Penn academics had used, startling the young researcher. Working alone in a dreary basement and through intense pain, he had actually improved on the Penn professors' work.
Years later, Karikó and Weissman who would win acclaim. In September 2021, the scientists were awarded the Lasker-DeBakey Clinical Medical Research Award. Some predict they eventually will win a Nobel prize. But it would be Schrum's innovation that would form the backbone of both Moderna and Pfizer-BioNTech's Covid-19 vaccine, not the chemical modifications that Karikó and Weissman developed. For Schrum, necessity had truly been the mother of invention.
The Scientist Who Solved Delivery: Kerry Benenato
For several years, Moderna would make slow progress developing drugs to treat various diseases. Eventually, the company decided that mRNA was likely better suited for vaccines. By 2017, Moderna and the National Institutes of Health were discussing working together to develop mRNA–based vaccines, a partnership that buoyed Moderna's executives. There remained a huge obstacle in Moderna's way, however. It was up to Kerry Benenato to find a solution.
Benenato received an early hint of the hurdle in front of her three years earlier, when the organic chemist was first hired. When a colleague gave her a company tour, she was introduced to Moderna's chief scientific officer, Joseph Bolen, who seemed unusually excited to meet her.
"Oh, great!" Bolen said with a smile. "She's the one who's gonna solve delivery."
Bolen gave a hearty laugh and walked away, but Benenato detected seriousness in his quip.
Solve delivery?
It was a lot to expect from a 37-year-old scientist already dealing with insecurities and self-doubt. Benenato was an accomplished researcher who most recently had worked at AstraZeneca after completing post-doctoral studies at Harvard University. Despite her impressive credentials, Benenato battled a lack of confidence that sometimes got in her way. Performance reviews from past employers had been positive, but they usually produced similar critiques: Be more vocal. Do a better job advocating for your ideas. Give us more, Kerry.
Benenato was petite and soft-spoken. She sometimes stuttered or relied on "ums" and "ahs" when she became nervous, especially in front of groups, part of why she sometimes didn't feel comfortable speaking up.
"I'm an introvert," she says. "Self-confidence is something that's always been an issue."
To Benenato, Moderna's vaccine approach seemed promising—the team was packaging mRNAs in microscopic fatty-acid compounds called lipid nanoparticles, or LNPs, that protected the molecules on their way into cells. Moderna's shots should have been producing ample and long-lasting proteins. But the company's scientists were alarmed—they were injecting shots deep into the muscle of mice, but their immune systems were mounting spirited responses to the foreign components of the LNPs, which had been developed by a Canadian company.
This toxicity was a huge issue: A vaccine or drug that caused sharp pain and awful fevers wasn't going to prove very popular. The Moderna team was in a bind: Its mRNA had to be wrapped in the fatty nanoparticles to have a chance at producing plentiful proteins, but the body wasn't tolerating the microscopic encasements, especially upon repeated dosing.
The company's scientists had done everything they could to try to make the molecule's swathing material disappear soon after entering the cells, in order to avoid the unfortunate side effects, such as chills and headaches, but they weren't making headway. Frustration mounted. Somehow, the researchers had to find a way to get the encasements—made of little balls of fat, cholesterol, and other substances—to deliver their payload mRNA and then quickly vanish, like a parent dropping a teenager off at a party, to avoid setting off the immune system in unpleasant ways, even as the RNA and the proteins the molecule created stuck around.
Benenato wasn't entirely shocked by the challenges Moderna was facing. One of the reasons she had joined the upstart company was to help develop its delivery technology. She just didn't realize how pressing the issue was, or how stymied the researchers had become. Benenato also didn't know that Moderna board members were among those most discouraged by the delivery issue. In meetings, some of them pointed out that pharmaceutical giants like Roche Holding and Novartis had worked on similar issues and hadn't managed to develop lipid nanoparticles that were both effective and well tolerated by the body. Why would Moderna have any more luck?
Stephen Hoge insisted the company could yet find a solution.
"There's no way the only innovations in LNP are going to come from some academics and a small Canadian company," insisted Hoge, who had convinced the executives that hiring Benenato might help deliver an answer.
Benenato realized that while Moderna might have been a hot Boston-area start- up, it wasn't set up to do the chemistry necessary to solve their LNP problem. Much of its equipment was old or secondhand, and it was the kind used to tinker with mRNAs, not lipids.
"It was scary," she says.
When Benenato saw the company had a nuclear magnetic resonance spectrometer, which allows chemists to see the molecular structure of material, she let out a sigh of relief. Then Benenato inspected the machine and realized it was a jalopy. The hulking, aging instrument had been decommissioned and left behind by a previous tenant, too old and banged up to bring with them.
Benenato began experimenting with different chemical changes for Moderna's LNPs, but without a working spectrometer she and her colleagues had to have samples ready by noon each day, so they could be picked up by an outside company that would perform the necessary analysis. After a few weeks, her superiors received an enormous bill for the outsourced work and decided to pay to get the old spectrometer running again.
After months of futility, Benenato became impatient. An overachiever who could be hard on herself, she was eager to impress her new bosses. Benenato felt pressure outside the office, as well. She was married with a preschool-age daughter and an eighteen-month-old son. In her last job, Benenato's commute had been a twenty-minute trip to Astra-Zeneca's office in Waltham, outside Boston; now she was traveling an hour to Moderna's Cambridge offices. She became anxious—how was she going to devote the long hours she realized were necessary to solve their LNP quandary while providing her children proper care? Joining Moderna was beginning to feel like a possible mistake.
She turned to her husband and father for help. They reminded her of the hard work she had devoted to establishing her career and said it would be a shame if she couldn't take on the new challenge. Benenato's husband said he was happy to stay home with the kids, alleviating some of her concerns.
Back in the office, she got to work. She wanted to make lipids that were easier for the body to chop into smaller pieces, so they could be eliminated by the body's enzymes. Until then, Moderna, like most others, relied on all kinds of complicated chemicals to hold its LNP packaging together. They weren't natural, though, so the body was having a hard time breaking them down, causing the toxicity.
Benenato began experimenting with simpler chemicals. She inserted "ester bonds"—compounds referred to in chemical circles as "handles" because the body easily grabs them and breaks them apart. Ester bonds had two things going for them: They were strong enough to help ensure the LNP remained stable, acting much like a drop of oil in water, but they also gave the body's enzymes something to target and break down as soon as the LNP entered the cell, a way to quickly rid the body of the potentially toxic LNP components. Benenato thought the inclusion of these chemicals might speed the elimination of the LNP delivery material.
This idea, Benenato realized, was nothing more than traditional, medicinal chemistry. Most people didn't use ester bonds because they were pretty unsophisticated. But, hey, the tricky stuff wasn't working, so Benenato thought she'd see if the simple stuff worked.
Benenato also wanted to try to replace a group of unnatural chemicals in the LNP that was contributing to the spirited and unwelcome response from the immune system. Benenato set out to build a new and improved chemical combination. She began with ethanolamine, a colorless, natural chemical, an obvious start for any chemist hoping to build a more complex chemical combination. No one relied on ethanolamine on its own.
Benenato was curious, though. What would happen if she used just these two simple modifications to the LNP: ethanolamine with the ester bonds? Right away, Benenato noticed her new, super-simple compound helped mRNA create some protein in animals. It wasn't much, but it was a surprising and positive sign. Benenato spent over a year refining her solution, testing more than one hundred variations, all using ethanolamine and ester bonds, showing improvements with each new version of LNP. After finishing her 102nd version of the lipid molecule, which she named SM102, Benenato was confident enough in her work to show it to Hoge and others.
They immediately got excited. The team kept tweaking the composition of the lipid encasement. In 2017, they wrapped it around mRNA molecules and injected the new combination in mice and then monkeys. They saw plentiful, potent proteins were being produced and the lipids were quickly being eliminated, just as Benenato and her colleagues had hoped. Moderna had its special sauce.
That year, Benenato was asked to deliver a presentation to Stephane Bancel, Moderna's chief executive, Afeyan, and Moderna's executive committee to explain why it made sense to use the new, simpler LNP formulation for all its mRNA vaccines. She still needed approval from the executives to make the change. Ahead of the meeting, she was apprehensive, as some of her earlier anxieties returned. But an unusual calm came over her as she began speaking to the group. Benenato explained how experimenting with basic, overlooked chemicals had led to her discovery.
She said she had merely stumbled onto the company's solution, though her bosses understood the efforts that had been necessary for the breakthrough. The board complimented her work and agreed with the idea of switching to the new LNP. Benenato beamed with pride.
"As a scientist, serendipity has been my best friend," she told the executives.
Over the next few years, Benenato and her colleagues would improve on their methods and develop even more tolerable and potent LNP encasement for mRNA molecules. Their work enabled Moderna to include higher doses of vaccine in its shots. In early 2020, Moderna developed Covid-19 shots that included 100 micrograms of vaccine, compared with 30 micrograms in the Pfizer-BioNTech vaccine. That difference appears to help the Moderna vaccine generate higher titers and provide more protection.
"You set out in a career in drug discovery to want to make a difference," Benenato says. "Seeing it come to reality has been surreal and emotional."
Editor's Note: This essay is excerpted from A SHOT TO SAVE THE WORLD: The Inside Story of the Life-or-Death Race for a COVID-19 Vaccine by Gregory Zuckerman, now on sale from Portfolio/Penguin.
*Jason Schrum's arthritis is now in complete remission, thanks to Humira (adalimumab), a TNF-alpha blocker.
After spaceflight record, NASA looks to protect astronauts on even longer trips
At T-minus six seconds, the main engines of the Atlantis Space Shuttle ignited, rattling its capsule “like a skyscraper in an earthquake,” according to astronaut Tom Jones, describing the 1988 launch. As the rocket lifted off and accelerated to three times the force of Earth's gravity, “It felt as if two of my friends were standing on my chest and wouldn’t get off.” But when Atlantis reached orbit, the main engines cut off, and the astronauts were suddenly weightless.
Since 1961, NASA has sent hundreds of astronauts into space while working to making their voyages safer and smoother. Yet, challenges remain. Weightlessness may look amusing when watched from Earth, but it has myriad effects on cognition, movement and other functions. When missions to space stretch to six months or longer, microgravity can impact astronauts’ health and performance, making it more difficult to operate their spacecraft.
Yesterday, NASA astronaut Frank Rubio returned to Earth after over one year, the longest single spaceflight for a U.S. astronaut. But this is just the start; longer and more complex missions into deep space loom ahead, from returning to the moon in 2025 to eventually sending humans to Mars. To ensure that these missions succeed, NASA is increasing efforts to study the biological effects and prevent harm.
The dangers of microgravity are real
A NASA report published in 2016 details a long list of incidents and near-misses caused – at least partly – by space-induced changes in astronauts’ vision and coordination. These issues make it harder to move with precision and to judge distance and velocity.
According to the report, in 1997, a resupply ship collided with the Mir space station, possibly because a crew member bumped into the commander during the final docking maneuver. This mishap caused significant damage to the space station.
Returns to Earth suffered from problems, too. The same report notes that touchdown speeds during the first 100 space shuttle landings were “outside acceptable limits. The fastest landing on record – 224 knots (258 miles) per hour – was linked to the commander’s momentary spatial disorientation.” Earlier, each of the six Apollo crews that landed on the moon had difficulty recognizing moon landmarks and estimating distances. For example, Apollo 15 landed in an unplanned area, ultimately straddling the rim of a five-foot deep crater on the moon, harming one of its engines.
Spaceflight causes unique stresses on astronauts’ brains and central nervous systems. NASA is working to reduce these harmful effects.
NASA
Space messes up your brain
In space, astronauts face the challenges of microgravity, ionizing radiation, social isolation, high workloads, altered circadian rhythms, monotony, confined living quarters and a high-risk environment. Among these issues, microgravity is one of the most consequential in terms of physiological changes. It changes the brain’s structure and its functioning, which can hurt astronauts’ performance.
The brain shifts upwards within the skull, displacing the cerebrospinal fluid, which reduces the brain’s cushioning. Essentially, the brain becomes crowded inside the skull like a pair of too-tight shoes.
That’s partly because of how being in space alters blood flow. On Earth, gravity pulls our blood and other internal fluids toward our feet, but our circulatory valves ensure that the fluids are evenly distributed throughout the body. In space, there’s not enough gravity to pull the fluids down, and they shift up, says Rachael D. Seidler, a physiologist specializing in spaceflight at the University of Florida and principal investigator on many space-related studies. The head swells and legs appear thinner, causing what astronauts call “puffy face chicken legs.”
“The brain changes at the structural and functional level,” says Steven Jillings, equilibrium and aerospace researcher at the University of Antwerp in Belgium. “The brain shifts upwards within the skull,” displacing the cerebrospinal fluid, which reduces the brain’s cushioning. Essentially, the brain becomes crowded inside the skull like a pair of too-tight shoes. Some of the displaced cerebrospinal fluid goes into cavities within the brain, called ventricles, enlarging them. “The remaining fluids pool near the chest and heart,” explains Jillings. After 12 consecutive months in space, one astronaut had a ventricle that was 25 percent larger than before the mission.
Some changes reverse themselves while others persist for a while. An example of a longer-lasting problem is spaceflight-induced neuro-ocular syndrome, which results in near-sightedness and pressure inside the skull. A study of approximately 300 astronauts shows near-sightedness affects about 60 percent of astronauts after long missions on the International Space Station (ISS) and more than 25 percent after spaceflights of only a few weeks.
Another long-term change could be the decreased ability of cerebrospinal fluid to clear waste products from the brain, Seidler says. That’s because compressing the brain also compresses its waste-removing glymphatic pathways, resulting in inflammation, vulnerability to injuries and worsening its overall health.
The effects of long space missions were best demonstrated on astronaut twins Scott and Mark Kelly. This NASA Twins Study showed multiple, perhaps permanent, changes in Scott after his 340-day mission aboard the ISS, compared to Mark, who remained on Earth. The differences included declines in Scott’s speed, accuracy and cognitive abilities that persisted longer than six months after returning to Earth in March 2016.
By the end of 2020, Scott’s cognitive abilities improved, but structural and physiological changes to his eyes still remained, he said in a BBC interview.
“It seems clear that the upward shift of the brain and compression of the surrounding tissues with ventricular expansion might not be a good thing,” Seidler says. “But, at this point, the long-term consequences to brain health and human performance are not really known.”
NASA astronaut Kate Rubins conducts a session for the Neuromapping investigation.
NASA
Staying sharp in space
To investigate how prolonged space travel affects the brain, NASA launched a new initiative called the Complement of Integrated Protocols for Human Exploration Research (CIPHER). “CIPHER investigates how long-duration spaceflight affects both brain structure and function,” says neurobehavioral scientist Mathias Basner at the University of Pennsylvania, a principal investigator for several NASA studies. “Through it, we can find out how the brain adapts to the spaceflight environment and how certain brain regions (behave) differently after – relative to before – the mission.”
To do this, he says, “Astronauts will perform NASA’s cognition test battery before, during and after six- to 12-month missions, and will also perform the same test battery in an MRI scanner before and after the mission. We have to make sure we better understand the functional consequences of spaceflight on the human brain before we can send humans safely to the moon and, especially, to Mars.”
As we go deeper into space, astronauts cognitive and physical functions will be even more important. “A trip to Mars will take about one year…and will introduce long communication delays,” Seidler says. “If you are on that mission and have a problem, it may take eight to 10 minutes for your message to reach mission control, and another eight to 10 minutes for the response to get back to you.” In an emergency situation, that may be too late for the response to matter.
“On a mission to Mars, astronauts will be exposed to stressors for unprecedented amounts of time,” Basner says. To counter them, NASA is considering the continuous use of artificial gravity during the journey, and Seidler is studying whether artificial gravity can reduce the harmful effects of microgravity. Some scientists are looking at precision brain stimulation as a way to improve memory and reduce anxiety due to prolonged exposure to radiation in space.
Other scientists are exploring how to protect neural stem cells (which create brain cells) from radiation damage, developing drugs to repair damaged brain cells and protect cells from radiation.
To boldly go where no astronauts have gone before, they must have optimal reflexes, vision and decision-making. In the era of deep space exploration, the brain—without a doubt—is the final frontier.
Additionally, NASA is scrutinizing each aspect of the mission, including astronaut exercise, nutrition and intellectual engagement. “We need to give astronauts meaningful work. We need to stimulate their sensory, cognitive and other systems appropriately,” Basner says, especially given their extreme confinement and isolation. The scientific experiments performed on the ISS – like studying how microgravity affects the ability of tissue to regenerate is a good example.
“We need to keep them engaged socially, too,” he continues. The ISS crew, for example, regularly broadcasts from space and answers prerecorded questions from students on Earth, and can engage with social media in real time. And, despite tight quarters, NASA is ensuring the crew capsule and living quarters on the moon or Mars include private space, which is critical for good mental health.
Exploring deep space builds on a foundation that began when astronauts first left the planet. With each mission, scientists learn more about spaceflight effects on astronauts’ bodies. NASA will be using these lessons to succeed with its plans to build science stations on the moon and, eventually, Mars.
“Through internally and externally led research, investigations implemented in space and in spaceflight simulations on Earth, we are striving to reduce the likelihood and potential impacts of neurostructural changes in future, extended spaceflight,” summarizes NASA scientist Alexandra Whitmire. To boldly go where no astronauts have gone before, they must have optimal reflexes, vision and decision-making. In the era of deep space exploration, the brain—without a doubt—is the final frontier.
A newly discovered brain cell may lead to better treatments for cognitive disorders
Swiss researchers have discovered a third type of brain cell that appears to be a hybrid of the two other primary types — and it could lead to new treatments for many brain disorders.
The challenge: Most of the cells in the brain are either neurons or glial cells. While neurons use electrical and chemical signals to send messages to one another across small gaps called synapses, glial cells exist to support and protect neurons.
Astrocytes are a type of glial cell found near synapses. This close proximity to the place where brain signals are sent and received has led researchers to suspect that astrocytes might play an active role in the transmission of information inside the brain — a.k.a. “neurotransmission” — but no one has been able to prove the theory.
A new brain cell: Researchers at the Wyss Center for Bio and Neuroengineering and the University of Lausanne believe they’ve definitively proven that some astrocytes do actively participate in neurotransmission, making them a sort of hybrid of neurons and glial cells.
According to the researchers, this third type of brain cell, which they call a “glutamatergic astrocyte,” could offer a way to treat Alzheimer’s, Parkinson’s, and other disorders of the nervous system.
“Its discovery opens up immense research prospects,” said study co-director Andrea Volterra.
The study: Neurotransmission starts with a neuron releasing a chemical called a neurotransmitter, so the first thing the researchers did in their study was look at whether astrocytes can release the main neurotransmitter used by neurons: glutamate.
By analyzing astrocytes taken from the brains of mice, they discovered that certain astrocytes in the brain’s hippocampus did include the “molecular machinery” needed to excrete glutamate. They found evidence of the same machinery when they looked at datasets of human glial cells.
Finally, to demonstrate that these hybrid cells are actually playing a role in brain signaling, the researchers suppressed their ability to secrete glutamate in the brains of mice. This caused the rodents to experience memory problems.
“Our next studies will explore the potential protective role of this type of cell against memory impairment in Alzheimer’s disease, as well as its role in other regions and pathologies than those explored here,” said Andrea Volterra, University of Lausanne.
But why? The researchers aren’t sure why the brain needs glutamatergic astrocytes when it already has neurons, but Volterra suspects the hybrid brain cells may help with the distribution of signals — a single astrocyte can be in contact with thousands of synapses.
“Often, we have neuronal information that needs to spread to larger ensembles, and neurons are not very good for the coordination of this,” researcher Ludovic Telley told New Scientist.
Looking ahead: More research is needed to see how the new brain cell functions in people, but the discovery that it plays a role in memory in mice suggests it might be a worthwhile target for Alzheimer’s disease treatments.
The researchers also found evidence during their study that the cell might play a role in brain circuits linked to seizures and voluntary movements, meaning it’s also a new lead in the hunt for better epilepsy and Parkinson’s treatments.
“Our next studies will explore the potential protective role of this type of cell against memory impairment in Alzheimer’s disease, as well as its role in other regions and pathologies than those explored here,” said Volterra.