Ring vaccination strategy can rein in monkeypox virus, scientists say
A new virus has emerged and stoked fears of another pandemic: monkeypox. Since May 2022, it has been detected in 29 U.S. states, the District of Columbia, and Puerto Rico among international travelers and their close contacts. On a worldwide scale, as of June 30, there have been 5,323 cases in 52 countries.
The good news: An existing vaccine can go a long way toward preventing a catastrophic outbreak. Because monkeypox is a close relative of smallpox, the same vaccine can be used—and it is about 85 percent effective against the virus, according to the World Health Organization (WHO).
Also on the plus side, monkeypox is less contagious with milder illness than smallpox and, compared to COVID-19, produces more telltale signs. Scientists think that a “ring” vaccination strategy can be used when these signs appear to help with squelching this alarming outbreak.
How it’s transmitted
Monkeypox spreads between people primarily through direct contact with infectious sores, scabs, or bodily fluids. People also can catch it through respiratory secretions during prolonged, face-to-face contact, according to the Centers for Disease Control and Prevention (CDC).
As of June 30, there have been 396 documented monkeypox cases in the U.S., and the CDC has activated its Emergency Operations Center to mobilize additional personnel and resources. The U.S. Department of Health and Human Services is aiming to boost testing capacity and accessibility. No Americans have died from monkeypox during this outbreak but, during the COVID-19 pandemic (February 2020 to date), Africa has documented 12,141 cases and 363 deaths from monkeypox.
Ring vaccination proved effective in curbing the smallpox and Ebola outbreaks. As the monkeypox threat continues to loom, scientists view this as the best vaccine approach.
A person infected with monkeypox typically has symptoms—for instance, fever and chills—in a contagious state, so knowing when to avoid close contact with others makes it easier to curtail than COVID-19.
Advantages of ring vaccination
For this reason, it’s feasible to vaccinate a “ring” of people around the infected individual rather than inoculating large swaths of the population. Ring vaccination proved effective in curbing the smallpox and Ebola outbreaks. As the monkeypox threat continues to loom, scientists view this as the best vaccine approach.
With many infections, “it normally would make sense to everyone to vaccinate more widely,” says Wesley C. Van Voorhis, a professor and director of the Center for Emerging and Re-emerging Infectious Diseases at the University of Washington School of Medicine in Seattle. However, “in this case, ring vaccination may be sufficient to contain the outbreak and also minimize the rare, but potentially serious side effects of the smallpox/monkeypox vaccine.”
There are two licensed smallpox vaccines in the United States: ACAM2000 (live Vaccina virus) and JYNNEOS (live virus non-replicating). The ACAM 2000, Van Voorhis says, is the old smallpox vaccine that, in rare instances, could spread diffusely within the body and cause heart problems, as well as severe rash in people with eczema or serious infection in immunocompromised patients.
To prevent organ damage, the current recommendation would be to use the JYNNEOS vaccine, says Phyllis Kanki, a professor of health sciences in the division of immunology and infectious diseases at the Harvard T.H. Chan School of Public Health. However, according to a report on the CDC’s website, people with immunocompromising conditions could have a higher risk of getting a severe case of monkeypox, despite being vaccinated, and “might be less likely to mount an effective response after any vaccination, including after JYNNEOS.”
In the late 1960s, the ring vaccination strategy became part of the WHO’s mission to globally eradicate smallpox, with the last known natural case described in Somalia in 1977. Ring vaccination can also refer to how a clinical trial is designed, as was the case in 2015, when this approach was used for researching the benefits of an investigational Ebola vaccine in Guinea, Kanki says.
“Since Monkeypox spreads by close contact and we have an effective vaccine, vaccinating high-risk individuals and their contacts may be a good strategy to limit transmission,” she says, adding that privacy is an important ethical principle that comes into play, as people with monkeypox would need to disclose their close contacts so that they could benefit from ring vaccination.
Rapid identification of cases and contacts—along with their cooperation—is essential for ring vaccination to be effective. Although mass vaccination also may work, the risk of infection to most of the population remains low while supply of the JYNNEOS vaccine is limited, says Stanley Deresinski, a clinical professor of medicine in the Infectious Disease Clinic at Stanford University School of Medicine.
Other strategies for preventing transmission
Ideally, the vaccine should be administered within four days of an exposure, but it’s recommended for up to 14 days. The WHO also advocates more widespread vaccination campaigns in the population segment with the most cases so far: men who engage in sex with other men.
The virus appears to be spreading in sexual networks, which differs from what was seen in previously reported outbreaks of monkeypox (outside of Africa), where risk was associated with travel to central or west Africa or various types of contact with individuals or animals from those locales. There is no evidence of transmission by food, but contaminated articles in the environment such as bedding are potential sources of the virus, Deresinski says.
Severe cases of monkeypox can occur, but “transmission of the virus requires close contact,” he says. “There is no evidence of aerosol transmission, as occurs with SARS-CoV-2, although it must be remembered that the smallpox virus, a close relative of monkeypox, was transmitted by aerosol.”
Deresinski points to the fact that in 2003, monkeypox was introduced into the U.S. through imports from Ghana of infected small mammals, such as Gambian giant rats, as pets. They infected prairie dogs, which also were sold as pets and, ultimately, this resulted in 37 confirmed transmissions to humans and 10 probable cases. A CDC investigation identified no cases of human-to-human transmission. Then, in 2021, a traveler flew from Nigeria to Dallas through Atlanta, developing skin lesions several days after arrival. Another CDC investigation yielded 223 contacts, although 85 percent were deemed to be at only minimal risk and the remainder at intermediate risk. No new cases were identified.
How much should we be worried
But how serious of a threat is monkeypox this time around? “Right now, the risk to the general public is very low,” says Scott Roberts, an assistant professor and associate medical director of infection prevention at Yale School of Medicine. “Monkeypox is spread through direct contact with infected skin lesions or through close contact for a prolonged period of time with an infected person. It is much less transmissible than COVID-19.”
The monkeypox incubation period—the time from infection until the onset of symptoms—is typically seven to 14 days but can range from five to 21 days, compared with only three days for the Omicron variant of COVID-19. With such a long incubation, there is a larger window to conduct contact tracing and vaccinate people before symptoms appear, which can prevent infection or lessen the severity.
But symptoms may present atypically or recognition may be delayed. “Ring vaccination works best with 100 percent adherence, and in the absence of a mandate, this is not achievable,” Roberts says.
At the outset of infection, symptoms include fever, chills, and fatigue. Several days later, a rash becomes noticeable, usually beginning on the face and spreading to other parts of the body, he says. The rash starts as flat lesions that raise and develop fluid, similar to manifestations of chickenpox. Once the rash scabs and falls off, a person is no longer contagious.
“It's an uncomfortable infection,” says Van Voorhis, the University of Washington School of Medicine professor. There may be swollen lymph nodes. Sores and rash are often limited to the genitals and areas around the mouth or rectum, suggesting intimate contact as the source of spread.
Symptoms of monkeypox usually last from two to four weeks. The WHO estimated that fatalities range from 3 to 6 percent. Although it’s believed to infect various animal species, including rodents and monkeys in west and central Africa, “the animal reservoir for the virus is unknown,” says Kanki, the Harvard T.H. Chan School of Public Health professor.
Too often, viruses originate in parts of the world that are too poor to grapple with them and may lack the resources to invest in vaccines and treatments. “This disease is endemic in central and west Africa, and it has basically been ignored until it jumped to the north and infected Europeans, Americans, and Canadians,” Van Voorhis says. “We have to do a better job in health care and prevention all over the world. This is the kind of thing that comes back to bite us.”
Regenerative medicine has come a long way, baby
The field of regenerative medicine had a shaky start. In 2002, when news spread about the first cloned animal, Dolly the sheep, a raucous debate ensued. Scary headlines and organized opposition groups put pressure on government leaders, who responded by tightening restrictions on this type of research.
Fast forward to today, and regenerative medicine, which focuses on making unhealthy tissues and organs healthy again, is rewriting the code to healing many disorders, though it’s still young enough to be considered nascent. What started as one of the most controversial areas in medicine is now promising to transform it.
Progress in the lab has addressed previous concerns. Back in the early 2000s, some of the most fervent controversy centered around somatic cell nuclear transfer (SCNT), the process used by scientists to produce Dolly. There was fear that this technique could be used in humans, with possibly adverse effects, considering the many medical problems of the animals who had been cloned.
But today, scientists have discovered better approaches with fewer risks. Pioneers in the field are embracing new possibilities for cellular reprogramming, 3D organ printing, AI collaboration, and even growing organs in space. It could bring a new era of personalized medicine for longer, healthier lives - while potentially sparking new controversies.
Engineering tissues from amniotic fluids
Work in regenerative medicine seeks to reverse damage to organs and tissues by culling, modifying and replacing cells in the human body. Scientists in this field reach deep into the mechanisms of diseases and the breakdowns of cells, the little workhorses that perform all life-giving processes. If cells can’t do their jobs, they take whole organs and systems down with them. Regenerative medicine seeks to harness the power of healthy cells derived from stem cells to do the work that can literally restore patients to a state of health—by giving them healthy, functioning tissues and organs.
Modern-day regenerative medicine takes its origin from the 1998 isolation of human embryonic stem cells, first achieved by John Gearhart at Johns Hopkins University. Gearhart isolated the pluripotent cells that can differentiate into virtually every kind of cell in the human body. There was a raging controversy about the use of these cells in research because at that time they came exclusively from early-stage embryos or fetal tissue.
Back then, the highly controversial SCNT cells were the only way to produce genetically matched stem cells to treat patients. Since then, the picture has changed radically because other sources of highly versatile stem cells have been developed. Today, scientists can derive stem cells from amniotic fluid or reprogram patients’ skin cells back to an immature state, so they can differentiate into whatever types of cells the patient needs.
In the context of medical history, the field of regenerative medicine is progressing at a dizzying speed. But for those living with aggressive or chronic illnesses, it can seem that the wheels of medical progress grind slowly.
The ethical debate has been dialed back and, in the last few decades, the field has produced important innovations, spurring the development of whole new FDA processes and categories, says Anthony Atala, a bioengineer and director of the Wake Forest Institute for Regenerative Medicine. Atala and a large team of researchers have pioneered many of the first applications of 3D printed tissues and organs using cells developed from patients or those obtained from amniotic fluid or placentas.
His lab, considered to be the largest devoted to translational regenerative medicine, is currently working with 40 different engineered human tissues. Sixteen of them have been transplanted into patients. That includes skin, bladders, urethras, muscles, kidneys and vaginal organs, to name just a few.
These achievements are made possible by converging disciplines and technologies, such as cell therapies, bioengineering, gene editing, nanotechnology and 3D printing, to create living tissues and organs for human transplants. Atala is currently overseeing clinical trials to test the safety of tissues and organs engineered in the Wake Forest lab, a significant step toward FDA approval.
In the context of medical history, the field of regenerative medicine is progressing at a dizzying speed. But for those living with aggressive or chronic illnesses, it can seem that the wheels of medical progress grind slowly.
“It’s never fast enough,” Atala says. “We want to get new treatments into the clinic faster, but the reality is that you have to dot all your i’s and cross all your t’s—and rightly so, for the sake of patient safety. People want predictions, but you can never predict how much work it will take to go from conceptualization to utilization.”
As a surgeon, he also treats patients and is able to follow transplant recipients. “At the end of the day, the goal is to get these technologies into patients, and working with the patients is a very rewarding experience,” he says. Will the 3D printed organs ever outrun the shortage of donated organs? “That’s the hope,” Atala says, “but this technology won’t eliminate the need for them in our lifetime.”
New methods are out of this world
Jeanne Loring, another pioneer in the field and director of the Center for Regenerative Medicine at Scripps Research Institute in San Diego, says that investment in regenerative medicine is not only paying off, but is leading to truly personalized medicine, one of the holy grails of modern science.
This is because a patient’s own skin cells can be reprogrammed to become replacements for various malfunctioning cells causing incurable diseases, such as diabetes, heart disease, macular degeneration and Parkinson’s. If the cells are obtained from a source other than the patient, they can be rejected by the immune system. This means that patients need lifelong immunosuppression, which isn’t ideal. “With Covid,” says Loring, “I became acutely aware of the dangers of immunosuppression.” Using the patient’s own cells eliminates that problem.
Microgravity conditions make it easier for the cells to form three-dimensional structures, which could more easily lead to the growing of whole organs. In fact, Loring's own cells have been sent to the ISS for study.
Loring has a special interest in neurons, or brain cells that can be developed by manipulating cells found in the skin. She is looking to eventually treat Parkinson’s disease using them. The manipulated cells produce dopamine, the critical hormone or neurotransmitter lacking in the brains of patients. A company she founded plans to start a Phase I clinical trial using cell therapies for Parkinson’s soon, she says.
This is the culmination of many years of basic research on her part, some of it on her own cells. In 2007, Loring had her own cells reprogrammed, so there’s a cell line that carries her DNA. “They’re just like embryonic stem cells, but personal,” she said.
Loring has another special interest—sending immature cells into space to be studied at the International Space Station. There, microgravity conditions make it easier for the cells to form three-dimensional structures, which could more easily lead to the growing of whole organs. In fact, her own cells have been sent to the ISS for study. “My colleagues and I have completed four missions at the space station,” she says. “The last cells came down last August. They were my own cells reprogrammed into pluripotent cells in 2009. No one else can say that,” she adds.
Future controversies and tipping points
Although the original SCNT debate has calmed down, more controversies may arise, Loring thinks.
One of them could concern growing synthetic embryos. The embryos are ultimately derived from embryonic stem cells, and it’s not clear to what stage these embryos can or will be grown in an artificial uterus—another recent invention. The science, so far done only in animals, is still new and has not been widely publicized but, eventually, “People will notice the production of synthetic embryos and growing them in an artificial uterus,” Loring says. It’s likely to incite many of the same reactions as the use of embryonic stem cells.
Bernard Siegel, the founder and director of the Regenerative Medicine Foundation and executive director of the newly formed Healthspan Action Coalition (HSAC), believes that stem cell science is rapidly approaching tipping point and changing all of medical science. (For disclosure, I do consulting work for HSAC). Siegel says that regenerative medicine has become a new pillar of medicine that has recently been fast-tracked by new technology.
Artificial intelligence is speeding up discoveries and the convergence of key disciplines, as demonstrated in Atala’s lab, which is creating complex new medical products that replace the body’s natural parts. Just as importantly, those parts are genetically matched and pose no risk of rejection.
These new technologies must be regulated, which can be a challenge, Siegel notes. “Cell therapies represent a challenge to the existing regulatory structure, including payment, reimbursement and infrastructure issues that 20 years ago, didn’t exist.” Now the FDA and other agencies are faced with this revolution, and they’re just beginning to adapt.
Siegel cited the 2021 FDA Modernization Act as a major step. The Act allows drug developers to use alternatives to animal testing in investigating the safety and efficacy of new compounds, loosening the agency’s requirement for extensive animal testing before a new drug can move into clinical trials. The Act is a recognition of the profound effect that cultured human cells are having on research. Being able to test drugs using actual human cells promises to be far safer and more accurate in predicting how they will act in the human body, and could accelerate drug development.
Siegel, a longtime veteran and founding father of several health advocacy organizations, believes this work helped bring cell therapies to people sooner rather than later. His new focus, through the HSAC, is to leverage regenerative medicine into extending not just the lifespan but the worldwide human healthspan, the period of life lived with health and vigor. “When you look at the HSAC as a tree,” asks Siegel, “what are the roots of that tree? Stem cell science and the huge ecosystem it has created.” The study of human aging is another root to the tree that has potential to lengthen healthspans.
The revolutionary science underlying the extension of the healthspan needs to be available to the whole world, Siegel says. “We need to take all these roots and come up with a way to improve the life of all mankind,” he says. “Everyone should be able to take advantage of this promising new world.”
Forty years ago, Joy Milne, a nurse from Perth, Scotland, noticed a musky odor coming from her husband, Les. At first, Milne thought the smell was a result of bad hygiene and badgered her husband to take longer showers. But when the smell persisted, Milne learned to live with it, not wanting to hurt her husband's feelings.
Twelve years after she first noticed the "woodsy" smell, Les was diagnosed at the age of 44 with Parkinson's Disease, a neurodegenerative condition characterized by lack of dopamine production and loss of movement. Parkinson's Disease currently affects more than 10 million people worldwide.
Milne spent the next several years believing the strange smell was exclusive to her husband. But to her surprise, at a local support group meeting in 2012, she caught the familiar scent once again, hanging over the group like a cloud. Stunned, Milne started to wonder if the smell was the result of Parkinson's Disease itself.
Milne's discovery led her to Dr. Tilo Kunath, a neurobiologist at the Centre for Regenerative Medicine at the University of Edinburgh. Together, Milne, Kunath, and a host of other scientists would use Milne's unusual sense of smell to develop a new diagnostic test, now in development and poised to revolutionize the treatment of Parkinson's Disease.
"Joy was in the audience during a talk I was giving on my work, which has to do with Parkinson's and stem cell biology," Kunath says. "During the patient engagement portion of the talk, she asked me if Parkinson's had a smell to it." Confused, Kunath said he had never heard of this – but for months after his talk he continued to turn the question over in his mind.
Kunath knew from his research that the skin's microbiome changes during different disease processes, releasing metabolites that can give off odors. In the medical literature, diseases like melanoma and Type 2 diabetes have been known to carry a specific scent – but no such connection had been made with Parkinson's. If people could smell Parkinson's, he thought, then it stood to reason that those metabolites could be isolated, identified, and used to potentially diagnose Parkinson's by their presence alone.
First, Kunath and his colleagues decided to test Milne's sense of smell. "I got in touch with Joy again and we designed a protocol to test her sense of smell without her having to be around patients," says Kunath, which could have affected the validity of the test. In his spare time, Kunath collected t-shirt samples from people diagnosed with Parkinson's and from others without the diagnosis and gave them to Milne to smell. In 100 percent of the samples, Milne was able to detect whether a person had Parkinson's based on smell alone. Amazingly, Milne was even able to detect the "Parkinson's scent" in a shirt from the control group – someone who did not have a Parkinson's diagnosis, but would go on to be diagnosed nine months later.
From the initial study, the team discovered that Parkinson's did have a smell, that Milne – inexplicably – could detect it, and that she could detect it long before diagnosis like she had with her husband, Les. But the experiments revealed other things that the team hadn't been expecting.
"One surprising thing we learned from that experiment was that the odor was always located in the back of the shirt – never in the armpit, where we expected the smell to be," Kunath says. "I had a chance meeting with a dermatologist and he said the smell was due to the patient's sebum, which are greasy secretions that are really dense on your upper back. We have sweat glands, instead of sebum, in our armpits." Patients with Parkinson's are also known to have increased sebum production.
With the knowledge that a patient's sebum was the source of the unusual smell, researchers could go on to investigate exactly what metabolites were in the sebum and in what amounts. Kunath, along with his associate, Dr. Perdita Barran, collected and analyzed sebum samples from 64 participants across the United Kingdom. Once the samples were collected, Barran and others analyzed it using a method called gas chromatography mass spectrometry, or GS-MC, which separated, weighed and helped identify the individual compounds present in each sebum sample.
Barran's team can now correctly identify Parkinson's in nine out of 10 patients – a much quicker and more accurate way to diagnose than what clinicians do now.
"The compounds we've identified in the sebum are not unique to people with Parkinson's, but they are differently expressed," says Barran, a professor of mass spectrometry at the University of Manchester. "So this test we're developing now is not a black-and-white, do-you-have-something kind of test, but rather how much of these compounds do you have compared to other people and other compounds." The team identified over a dozen compounds that were present in the sebum of Parkinson's patients in much larger amounts than the control group.
Using only the GC-MS and a sebum swab test, Barran's team can now correctly identify Parkinson's in nine out of 10 patients – a much quicker and more accurate way to diagnose than what clinicians do now.
"At the moment, a clinical diagnosis is based on the patient's physical symptoms," Barran says, and determining whether a patient has Parkinson's is often a long and drawn-out process of elimination. "Doctors might say that a group of symptoms looks like Parkinson's, but there are other reasons people might have those symptoms, and it might take another year before they're certain," Barran says. "Some of those symptoms are just signs of aging, and other symptoms like tremor are present in recovering alcoholics or people with other kinds of dementia." People under the age of 40 with Parkinson's symptoms, who present with stiff arms, are often misdiagnosed with carpal tunnel syndrome, she adds.
Additionally, by the time physical symptoms are present, Parkinson's patients have already lost a substantial amount of dopamine receptors – about sixty percent -- in the brain's basal ganglia. Getting a diagnosis before physical symptoms appear would mean earlier interventions that could prevent dopamine loss and preserve regular movement, Barran says.
"Early diagnosis is good if it means there's a chance of early intervention," says Barran. "It stops the process of dopamine loss, which means that motor symptoms potentially will not happen, or the onset of symptoms will be substantially delayed." Barran's team is in the processing of streamlining the sebum test so that definitive results will be ready in just two minutes.
"What we're doing right now will be a very inexpensive test, a rapid-screen test, and that will encourage people to self-sample and test at home," says Barran. In addition to diagnosing Parkinson's, she says, this test could also be potentially useful to determine if medications were at a therapeutic dose in people who have the disease, since the odor is strongest in people whose symptoms are least controlled by medication.
"When symptoms are under control, the odor is lower," Barran says. "Potentially this would allow patients and clinicians to see whether their symptoms are being managed properly with medication, or perhaps if they're being overmedicated." Hypothetically, patients could also use the test to determine if interventions like diet and exercise are effective at keeping Parkinson's controlled.
"We hope within the next two to five years we will have a test available."
Barran is now running another clinical trial – one that determines whether they can diagnose at an earlier stage and whether they can identify a difference in sebum samples between different forms of Parkinson's or diseases that have Parkinson's-like symptoms, such as Lewy Body Dementia.
"Within the next one to two years, we hope to be running a trial in the Manchester area for those people who do not have motor symptoms but are at risk for developing dementia due to symptoms like loss of smell and sleep difficulty," Barran had said in 2019. "If we can establish that, we can roll out a test that determines if you have Parkinson's or not with those first pre-motor symptoms, and then at what stage. We hope within the next two to five years we will have a test available."
In a 2022 study, published in the American Chemical Society, researchers used mass spectrometry to analyze sebum from skin swabs for the presence of the specific molecules. They found that some specific molecules are present only in people who have Parkinson’s. Now they hope that the same method can be used in regular diagnostic labs. The test, many years in the making, is inching its way to the clinic.
"We would likely first give this test to people who are at risk due to a genetic predisposition, or who are at risk based on prodomal symptoms, like people who suffer from a REM sleep disorder who have a 50 to 70 percent chance of developing Parkinson's within a ten year period," Barran says. "Those would be people who would benefit from early therapeutic intervention. For the normal population, it isn't beneficial at the moment to know until we have therapeutic interventions that can be useful."
Milne's husband, Les, passed away from complications of Parkinson's Disease in 2015. But thanks to him and the dedication of his wife, Joy, science may have found a way to someday prolong the lives of others with this devastating disease. Sometimes she can smell people who have Parkinson’s while in the supermarket or walking down the street but has been told by medical ethicists she cannot tell them, Milne said in an interview with the Guardian. But once the test becomes available in the clinics, it will do the job for her.
[Ed. Note: A older version of this hit article originally ran on September 3, 2019.]