NASA Has the Technology to Save Us From an Asteroid Strike, But Congress Won’t Fund It
At the biannual Planetary Defense Conference earlier this year, NASA ran a simulation of an asteroid slamming into the center of Manhattan.
For several millennia now, we've been lucky, but our luck won't hold out forever.
The gathering of astronomers, planetary scientists, and FEMA disaster-response experts attempted a number of interventions that might be possible within a time window of eight years, the given warning period before impact.
Catastrophic asteroid crashes are not without precedent, and scientists say it's only a matter of time before another one occurs—that is, if we do nothing to prevent it. It's believed that a huge asteroid crash off the coast of Mexico's Yucatan Peninsula created a worldwide disaster that helped to speed the extinction of the dinosaurs 65 million years ago.
In 1908, a meteoroid less than 300 feet in diameter exploded in the air over the Tunguska region of Siberia, creating a shockwave that leveled trees for hundreds of square miles. It's a matter of sheer luck it didn't hit a major population center, where human casualties could have been enormous.
For several millennia now, we've been lucky, but our luck won't hold out forever. There are millions of asteroids circulating about in our solar system, some of them hundreds of miles across, and although the odds of a massive one crashing to Earth in the near future is statistically low, the devastation could be apocalyptic.
Back at the conference, the experts tried sending several spacecrafts to knock the asteroid off-course by slamming into it. They considered blasting it with nuclear weapons. They even considered painting it white so it absorbed less of the sun's energy, hoping that would shift the asteroid's trajectory. In the simulations, all of the interventions failed and the giant space rock crashed into Manhattan, killing 1.3 million people in a massive explosion that was 1,000 times more powerful than the Hiroshima bomb.
NEOCam is designed, tested, and ready to build, but the project is currently frozen because of a $40 million gap in NASA funding.
Given more time, the scientists said, they might have succeeded in preventing the disaster. However, with today's asteroid-hunting telescopes, it's not likely we would have more warning. Our current telescopes are not powerful enough to detect all the near-earth asteroids, nor are they positioned well enough for sufficient detection. As recently as last week, for example, an asteroid traveling 15 miles a second narrowly missed crashing into the Earth, and it was only noticed several days in advance.
Now for the good news: There is a new technology that could buy us the time we need, says MIT planetary sciences professor Richard P. Binzel and colleagues who attended the conference. The Near-Earth Object Camera, or NEOCam, designed by NASA's Jet Propulsion Laboratory, would detect more than 90 percent of nearby objects that are 420 feet across or larger, according to Binzel.
The powerful infrared telescope is designed to sit within the L1 Lagrange point, a stable location in space where the gravitational pulls of the Earth and the sun cancel each other out. From there, large space bodies could be detected early enough to give scientists decades of warning when an asteroid is heading for Earth. NEOCam is designed, tested, and ready to build, but the project is currently frozen because of a $40 million gap in NASA funding.
The status of NEOCam, according to Binzel, is a case-study in short-sightedness and a lack of leadership. Congress needs to raise NASA's Planetary Defense budget from its current $160 million to $200 million to get the telescope built and launched into space, a goal that would seem eminently doable within the strictures of 2020's $4.75 trillion government budget. But Binzel describes a current deadlock between NASA, Congress, and the Office of Management and Budget as a "cosmic game of chicken."
If we don't use our technology to defend the planet, "it would be the most epic failure in the history of science."
In an excruciatingly budget-conscious atmosphere, "No one wants to stick their neck out and take adult responsibility" for getting the funding allocated that would unfreeze the project, says Binzel. But, he adds, "We have a moral obligation to act."
NEOCam would not only spot the overwhelming majority of asteroids in Earth's vicinity, it would determine their size and pinpoint exactly where they are likely to strike the Earth. And it would allow us decades to act, according to Binzel. Repeated ramming by an international armada of specialized spacecraft could slightly change the trajectory of an asteroid, he says. Changing the trajectory only a tiny bit, given the scale of millions of miles and several decades for the course change to take effect, could cause an asteroid to miss the Earth altogether.
"So far we've been relying on luck," says Binzel, "but luck is not a plan." Now that we have the technology to discover what's careening through our space neighborhood, it's our ethical duty to deploy it. If we don't use our technology to gain the knowledge we need to defend the planet, Binzel concludes, "it would be the most epic failure in the history of science."
Should Congress green light the $40 million budget for the new asteroid-hunting telescope? @NASA #NASA #astroid— leapsmag (@leapsmag) 1564681293.0
Few things are more painful than a urinary tract infection (UTI). Common in men and women, these infections account for more than 8 million trips to the doctor each year and can cause an array of uncomfortable symptoms, from a burning feeling during urination to fever, vomiting, and chills. For an unlucky few, UTIs can be chronic—meaning that, despite treatment, they just keep coming back.
But new research, presented at the European Association of Urology (EAU) Congress in Paris this week, brings some hope to people who suffer from UTIs.
Clinicians from the Royal Berkshire Hospital presented the results of a long-term, nine-year clinical trial where 89 men and women who suffered from recurrent UTIs were given an oral vaccine called MV140, designed to prevent the infections. Every day for three months, the participants were given two sprays of the vaccine (flavored to taste like pineapple) and then followed over the course of nine years. Clinicians analyzed medical records and asked the study participants about symptoms to check whether any experienced UTIs or had any adverse reactions from taking the vaccine.
The results showed that across nine years, 48 of the participants (about 54%) remained completely infection-free. On average, the study participants remained infection free for 54.7 months—four and a half years.
“While we need to be pragmatic, this vaccine is a potential breakthrough in preventing UTIs and could offer a safe and effective alternative to conventional treatments,” said Gernot Bonita, Professor of Urology at the Alta Bro Medical Centre for Urology in Switzerland, who is also the EAU Chairman of Guidelines on Urological Infections.
The news comes as a relief not only for people who suffer chronic UTIs, but also to doctors who have seen an uptick in antibiotic-resistant UTIs in the past several years. Because UTIs usually require antibiotics, patients run the risk of developing a resistance to the antibiotics, making infections more difficult to treat. A preventative vaccine could mean less infections, less antibiotics, and less drug resistance overall.
“Many of our participants told us that having the vaccine restored their quality of life,” said Dr. Bob Yang, Consultant Urologist at the Royal Berkshire NHS Foundation Trust, who helped lead the research. “While we’re yet to look at the effect of this vaccine in different patient groups, this follow-up data suggests it could be a game-changer for UTI prevention if it’s offered widely, reducing the need for antibiotic treatments.”
MILESTONE: Doctors have transplanted a pig organ into a human for the first time in history
Surgeons at Massachusetts General Hospital made history last week when they successfully transplanted a pig kidney into a human patient for the first time ever.
The recipient was a 62-year-old man named Richard Slayman who had been living with end-stage kidney disease caused by diabetes. While Slayman had received a kidney transplant in 2018 from a human donor, his diabetes ultimately caused the kidney to fail less than five years after the transplant. Slayman had undergone dialysis ever since—a procedure that uses an artificial kidney to remove waste products from a person’s blood when the kidneys are unable to—but the dialysis frequently caused blood clots and other complications that landed him in the hospital multiple times.
As a last resort, Slayman’s kidney specialist suggested a transplant using a pig kidney provided by eGenesis, a pharmaceutical company based in Cambridge, Mass. The highly experimental surgery was made possible with the Food and Drug Administration’s “compassionate use” initiative, which allows patients with life-threatening medical conditions access to experimental treatments.
The new frontier of organ donation
Like Slayman, more than 100,000 people are currently on the national organ transplant waiting list, and roughly 17 people die every day waiting for an available organ. To make up for the shortage of human organs, scientists have been experimenting for the past several decades with using organs from animals such as pigs—a new field of medicine known as xenotransplantation. But putting an animal organ into a human body is much more complicated than it might appear, experts say.
“The human immune system reacts incredibly violently to a pig organ, much more so than a human organ,” said Dr. Joren Madsen, director of the Mass General Transplant Center. Even with immunosuppressant drugs that suppress the body’s ability to reject the transplant organ, Madsen said, a human body would reject an animal organ “within minutes.”
So scientists have had to use gene-editing technology to change the animal organs so that they would work inside a human body. The pig kidney in Slayman’s surgery, for instance, had been genetically altered using CRISPR-Cas9 technology to remove harmful pig genes and add human ones. The kidney was also edited to remove pig viruses that could potentially infect a human after transplant.
With CRISPR technology, scientists have been able to prove that interspecies organ transplants are not only possible, but may be able to successfully work long term, too. In the past several years, scientists were able to transplant a pig kidney into a monkey and have the monkey survive for more than two years. More recently, doctors have transplanted pig hearts into human beings—though each recipient of a pig heart only managed to live a couple of months after the transplant. In one of the patients, researchers noted evidence of a pig virus in the man’s heart that had not been identified before the surgery and could be a possible explanation for his heart failure.
So far, so good
Slayman and his medical team ultimately decided to pursue the surgery—and the risk paid off. When the pig organ started producing urine at the end of the four-hour surgery, the entire operating room erupted in applause.
Slayman is currently receiving an infusion of immunosuppressant drugs to prevent the kidney from being rejected, while his doctors monitor the kidney’s function with frequent ultrasounds. Slayman is reported to be “recovering well” at Massachusetts General Hospital and is expected to be discharged within the next several days.