Neuromarketers Are Studying Brain Scans to Influence Our Product Choices
When was the last time you made a pro-con list? Carefully considered all factors and weighed them against each other before you made a choice?
Chances are that most of your decisions do not follow this rigorous process. They are made quickly, subconsciously, and often do not adhere to any strict logic. Rather, your decisions are influenced by your mood, your relatives and friends, and a range of other factors that scientists are still unraveling.
When the shoppers were asked why they chose that bottle of wine, almost none of them noticed the music or believed it influenced their decision.
Influencing your choices is also the holy grail of marketing. Companies spend vast amounts of time and money creating product designs and ads. These ads are often tested in focus groups or individual interviews to ensure that they will do well in the market.
Traditional methods of market research rely on self-reports. The participants are asked which ad they find more appealing and why. But there are a few problems with this approach.
For one, the participants might not fully understand their true preferences. They might think that the green design looks more appealing when they compare choices, but then pick up the orange one when they mindlessly wander through the supermarket. It's well known that we humans often do not act rationally, so why would we accurately predict our own behavior?
Another issue is that we like to think of ourselves as logical. Even though our choices are at least partially made subconsciously, we have a tendency to rationalize them after the fact. For example, when supermarkets play French music, the shoppers are 3-4 times more likely to buy French wine. Play German music and German wine sales go up. But when the shoppers are asked why they chose that bottle of wine, almost none of them notice the music or believe it influenced their decision. Instead, they say that they preferred the label or price.
Finally, participants might truly know their preference but choose not to disclose it. Imagine sitting in a focus group watching a TV spot that makes fun of somebody's misfortune. You might be too embarrassed to admit that this is the funnier and more appealing spot, because you're afraid of being judged.
Results from traditional market research are therefore unavoidably subjective and biased.
In the hope of overcoming these limitations, newer ways of market research have been developed, among them neuromarketing, which applies neuroscience to marketing.
Today, neuromarketers focus their efforts on three main stages: to aid product ideation, evaluate the finished product or prototypes, and develop the best marketing strategy. In all cases, they want to find the option with the most "favorable" brain response – but exactly how this brain response is defined varies vastly between studies.
Perhaps the most promising of all non-traditional techniques is functional magnetic resonance imaging (fMRI). This neuroimaging technique measures brain activity indirectly by tracking changes in blood flow. In short, active brain areas receive more oxygen-rich blood. The fMRI scanner picks up the difference between oxygen-rich and oxygen-poor blood and can therefore measure which brain areas are more active than others. But is there truly an untapped potential in the human brain that can be unlocked using neuroimaging?
A number of studies claim that functional neuroimaging has been successfully applied to marketing scenarios. For example, when researchers tried to predict the success of 6 different ads for chocolate bars, the brain response of 18 women was reportedly more predictive than their self-reported preference. The ad that was rated best in interviews was actually the least successful in a real supermarket. In contrast, the neuroimaging algorithm correctly predicted the top two selling ads.
One of the biggest fears is that the potential insights from neuromarketing studies could be used in new, disturbing ways for consumer manipulation.
This study has a number of limitations, which are representative of the majority of neuromarketing research. The field is full of experiments that are conducted with small samples or using suboptimal protocols, with a lack of appropriate control conditions. While a small number of academic researchers are using rigorous protocols, most studies are conducted by neuromarketing companies or funded by the corporations whose products were tested. Such set-ups raise the risk of biased reporting, calling into question the reliability of the findings. Publication bias – the tendency to publish only positive results which leads to a skewing of reported results in the literature – is especially common for industry-funded studies.
One of the biggest fears is that the potential insights from neuromarketing studies could be used in new, disturbing ways for consumer manipulation. If a new product or ad campaign is designed to target our subconscious decision-making better than ever before, are we less able to resist the purchase? We might believe that we all have a healthy amount of self-control, but when we're in the supermarket after a stressful day or we're struggling to manage the self-control of someone else, like a small child, is it ethical for corporations to tap our unconscious decision-making?
As with any technology, the deciding factor is how it will be used. While there are many dangerous applications that might make unhealthy products one day impossible to resist, there are also some more optimistic scenarios. For example, brain scans have been used to predict the success of an antismoking campaign. If such public health interventions that are notoriously ineffective could encourage more people to make healthier lifestyle choices, don't we all benefit? Or is this still a step too far toward manipulation and propaganda?
The conduct of the studies themselves is another problematic area. Academic researchers must go through a rigorous process before they can start a study, which involves review by an ethics board. In contrast, there are barely any regulations for corporate studies. This is not only relevant for the experience of the participants, but also for how the data are being used. Take an extreme case – the brain scan reveals that the participant has a tumor. Universities have protocols in place for how to deal with these situations – often, the scans would be reviewed by a neuro-radiologist and the participant would be informed. Commercial organizations are under no such obligation.
Neuromarketing carries great potential to nudge positive behavioral change, though it also carries the risk of abuse.
Neuromarketing is now a highly competitive field with many different vendors. The Advertising Research Foundation compared 8 vendors that used neuroscientific methods or biometrics for the research of ad campaigns and found that there were differences in methodology and approach; most were proprietary and vendors were not willing to disclose what they measured and how. This lack of transparency is slowing down progress, as researchers cannot contrast and compare different approaches to optimize them.
Despite these methodological challenges, neuromarketing carries great potential to nudge positive behavioral change, though it also carries the risk of abuse. Where one ends and the other starts will need to be clearly defined. It's time to start a public debate now to inform future laws and regulations for the neuromarketing industry, as these technologies will eventually affect us all.
Few things are more painful than a urinary tract infection (UTI). Common in men and women, these infections account for more than 8 million trips to the doctor each year and can cause an array of uncomfortable symptoms, from a burning feeling during urination to fever, vomiting, and chills. For an unlucky few, UTIs can be chronic—meaning that, despite treatment, they just keep coming back.
But new research, presented at the European Association of Urology (EAU) Congress in Paris this week, brings some hope to people who suffer from UTIs.
Clinicians from the Royal Berkshire Hospital presented the results of a long-term, nine-year clinical trial where 89 men and women who suffered from recurrent UTIs were given an oral vaccine called MV140, designed to prevent the infections. Every day for three months, the participants were given two sprays of the vaccine (flavored to taste like pineapple) and then followed over the course of nine years. Clinicians analyzed medical records and asked the study participants about symptoms to check whether any experienced UTIs or had any adverse reactions from taking the vaccine.
The results showed that across nine years, 48 of the participants (about 54%) remained completely infection-free. On average, the study participants remained infection free for 54.7 months—four and a half years.
“While we need to be pragmatic, this vaccine is a potential breakthrough in preventing UTIs and could offer a safe and effective alternative to conventional treatments,” said Gernot Bonita, Professor of Urology at the Alta Bro Medical Centre for Urology in Switzerland, who is also the EAU Chairman of Guidelines on Urological Infections.
The news comes as a relief not only for people who suffer chronic UTIs, but also to doctors who have seen an uptick in antibiotic-resistant UTIs in the past several years. Because UTIs usually require antibiotics, patients run the risk of developing a resistance to the antibiotics, making infections more difficult to treat. A preventative vaccine could mean less infections, less antibiotics, and less drug resistance overall.
“Many of our participants told us that having the vaccine restored their quality of life,” said Dr. Bob Yang, Consultant Urologist at the Royal Berkshire NHS Foundation Trust, who helped lead the research. “While we’re yet to look at the effect of this vaccine in different patient groups, this follow-up data suggests it could be a game-changer for UTI prevention if it’s offered widely, reducing the need for antibiotic treatments.”
MILESTONE: Doctors have transplanted a pig organ into a human for the first time in history
Surgeons at Massachusetts General Hospital made history last week when they successfully transplanted a pig kidney into a human patient for the first time ever.
The recipient was a 62-year-old man named Richard Slayman who had been living with end-stage kidney disease caused by diabetes. While Slayman had received a kidney transplant in 2018 from a human donor, his diabetes ultimately caused the kidney to fail less than five years after the transplant. Slayman had undergone dialysis ever since—a procedure that uses an artificial kidney to remove waste products from a person’s blood when the kidneys are unable to—but the dialysis frequently caused blood clots and other complications that landed him in the hospital multiple times.
As a last resort, Slayman’s kidney specialist suggested a transplant using a pig kidney provided by eGenesis, a pharmaceutical company based in Cambridge, Mass. The highly experimental surgery was made possible with the Food and Drug Administration’s “compassionate use” initiative, which allows patients with life-threatening medical conditions access to experimental treatments.
The new frontier of organ donation
Like Slayman, more than 100,000 people are currently on the national organ transplant waiting list, and roughly 17 people die every day waiting for an available organ. To make up for the shortage of human organs, scientists have been experimenting for the past several decades with using organs from animals such as pigs—a new field of medicine known as xenotransplantation. But putting an animal organ into a human body is much more complicated than it might appear, experts say.
“The human immune system reacts incredibly violently to a pig organ, much more so than a human organ,” said Dr. Joren Madsen, director of the Mass General Transplant Center. Even with immunosuppressant drugs that suppress the body’s ability to reject the transplant organ, Madsen said, a human body would reject an animal organ “within minutes.”
So scientists have had to use gene-editing technology to change the animal organs so that they would work inside a human body. The pig kidney in Slayman’s surgery, for instance, had been genetically altered using CRISPR-Cas9 technology to remove harmful pig genes and add human ones. The kidney was also edited to remove pig viruses that could potentially infect a human after transplant.
With CRISPR technology, scientists have been able to prove that interspecies organ transplants are not only possible, but may be able to successfully work long term, too. In the past several years, scientists were able to transplant a pig kidney into a monkey and have the monkey survive for more than two years. More recently, doctors have transplanted pig hearts into human beings—though each recipient of a pig heart only managed to live a couple of months after the transplant. In one of the patients, researchers noted evidence of a pig virus in the man’s heart that had not been identified before the surgery and could be a possible explanation for his heart failure.
So far, so good
Slayman and his medical team ultimately decided to pursue the surgery—and the risk paid off. When the pig organ started producing urine at the end of the four-hour surgery, the entire operating room erupted in applause.
Slayman is currently receiving an infusion of immunosuppressant drugs to prevent the kidney from being rejected, while his doctors monitor the kidney’s function with frequent ultrasounds. Slayman is reported to be “recovering well” at Massachusetts General Hospital and is expected to be discharged within the next several days.