Researchers Are Testing a New Stem Cell Therapy in the Hopes of Saving Millions from Blindness
Of all the infirmities of old age, failing sight is among the cruelest. It can mean the end not only of independence, but of a whole spectrum of joys—from gazing at a sunset or a grandchild's face to reading a novel or watching TV.
The Phase 1 trial will likely run through 2022, followed by a larger Phase 2 trial that could last another two or three years.
The leading cause of vision loss in people over 55 is age-related macular degeneration, or AMD, which afflicts an estimated 11 million Americans. As photoreceptors in the macula (the central part of the retina) die off, patients experience increasingly severe blurring, dimming, distortions, and blank spots in one or both eyes.
The disorder comes in two varieties, "wet" and "dry," both driven by a complex interaction of genetic, environmental, and lifestyle factors. It begins when deposits of cellular debris accumulate beneath the retinal pigment epithelium (RPE)—a layer of cells that nourish and remove waste products from the photoreceptors above them. In wet AMD, this process triggers the growth of abnormal, leaky blood vessels that damage the photoreceptors. In dry AMD, which accounts for 80 to 90 percent of cases, RPE cells atrophy, causing photoreceptors to wither away. Wet AMD can be controlled in about a quarter of patients, usually by injections of medication into the eye. For dry AMD, no effective remedy exists.
Stem Cells: Promise and Perils
Over the past decade, stem cell therapy has been widely touted as a potential treatment for AMD. The idea is to augment a patient's ailing RPE cells with healthy ones grown in the lab. A few small clinical trials have shown promising results. In a study published in 2018, for example, a University of Southern California team cultivated RPE tissue from embryonic stem cells on a plastic matrix and transplanted it into the retinas of four patients with advanced dry AMD. Because the trial was designed to test safety rather than efficacy, lead researcher Amir Kashani told a reporter, "we didn't expect that replacing RPE cells would return a significant amount of vision." Yet acuity improved substantially in one recipient, and the others regained their lost ability to focus on an object.
Therapies based on embryonic stem cells, however, have two serious drawbacks: Using fetal cell lines raises ethical issues, and such treatments require the patient to take immunosuppressant drugs (which can cause health problems of their own) to prevent rejection. That's why some experts favor a different approach—one based on induced pluripotent stem cells (iPSCs). Such cells, first produced in 2006, are made by returning adult cells to an undifferentiated state, and then using chemicals to reprogram them as desired. Treatments grown from a patient's own tissues could sidestep both hurdles associated with embryonic cells.
At least hypothetically. Today, the only stem cell therapies approved by the U.S. Food and Drug Administration (FDA) are umbilical cord-derived products for various blood and immune disorders. Although scientists are probing the use of embryonic stem cells or iPSCs for conditions ranging from diabetes to Parkinson's disease, such applications remain experimental—or fraudulent, as a growing number of patients treated at unlicensed "stem cell clinics" have painfully learned. (Some have gone blind after receiving bogus AMD therapies at those facilities.)
Last December, researchers at the National Eye Institute in Bethesda, Maryland, began enrolling patients with dry AMD in the country's first clinical trial using tissue grown from the patients' own stem cells. Led by biologist Kapil Bharti, the team intends to implant custom-made RPE cells in 12 recipients. If the effort pans out, it could someday save the sight of countless oldsters.
That, however, is what's technically referred to as a very big "if."
The First Steps
Bharti's trial is not the first in the world to use patient-derived iPSCs to treat age-related macular degeneration. In 2013, Japanese researchers implanted such cells into the eyes of a 77-year-old woman with wet AMD; after a year, her vision had stabilized, and she no longer needed injections to keep abnormal blood vessels from forming. A second patient was scheduled for surgery—but the procedure was canceled after the lab-grown RPE cells showed signs of worrisome mutations. That incident illustrates one potential problem with using stem cells: Under some circumstances, the cells or the tissue they form could turn cancerous.
"The knowledge and expertise we're gaining can be applied to many other iPSC-based therapies."
Bharti and his colleagues have gone to great lengths to avoid such outcomes. "Our process is significantly different," he told me in a phone interview. His team begins with patients' blood stem cells, which appear to be more genomically stable than the skin cells that the Japanese group used. After converting the blood cells to RPE stem cells, his team cultures them in a single layer on a biodegradable scaffold, which helps them grow in an orderly manner. "We think this material gives us a big advantage," Bharti says. The team uses a machine-learning algorithm to identify optimal cell structure and ensure quality control.
It takes about six months for a patch of iPSCs to become viable RPE cells. When they're ready, a surgeon uses a specially-designed tool to insert the tiny structure into the retina. Within days, the scaffold melts away, enabling the transplanted RPE cells to integrate fully into their new environment. Bharti's team initially tested their method on rats and pigs with eye damage mimicking AMD. The study, published in January 2019 in Science Translational Medicine, found that at ten weeks, the implanted RPE cells continued to function normally and protected neighboring photoreceptors from further deterioration. No trace of mutagenesis appeared.
Encouraged by these results, Bharti began recruiting human subjects. The Phase 1 trial will likely run through 2022, followed by a larger Phase 2 trial that could last another two or three years. FDA approval would require an even larger Phase 3 trial, with a decision expected sometime between 2025 and 2028—that is, if nothing untoward happens before then. One unknown (among many) is whether implanted cells can thrive indefinitely under the biochemically hostile conditions of an eye with AMD.
"Most people don't have a sense of just how long it takes to get something like this to work, and how many failures—even disasters—there are along the way," says Marco Zarbin, professor and chair of Ophthalmology and visual science at Rutgers New Jersey Medical School and co-editor of the book Cell-Based Therapy for Degenerative Retinal Diseases. "The first kidney transplant was done in 1933. But the first successful kidney transplant was in 1954. That gives you a sense of the time frame. We're really taking the very first steps in this direction."
Looking Ahead
Even if Bharti's method proves safe and effective, there's the question of its practicality. "My sense is that using induced pluripotent stem cells to treat the patient from whom they're derived is a very expensive undertaking," Zarbin observes. "So you'd have to have a very dramatic clinical benefit to justify that cost."
Bharti concedes that the price of iPSC therapy is likely to be high, given that each "dose" is formulated for a single individual, requires months to manufacture, and must be administered via microsurgery. Still, he expects economies of scale and production to emerge with time. "We're working on automating several steps of the process," he explains. "When that kicks in, a technician will be able to make products for 10 or 20 people at once, so the cost will drop proportionately."
Meanwhile, other researchers are pressing ahead with therapies for AMD using embryonic stem cells, which could be mass-produced to treat any patient who needs them. But should that approach eventually win FDA approval, Bharti believes there will still be room for a technique that requires neither fetal cell lines nor immunosuppression.
And not only for eye ailments. "The knowledge and expertise we're gaining can be applied to many other iPSC-based therapies," says the scientist, who is currently consulting with several companies that are developing such treatments. "I'm hopeful that we can leverage these approaches for a wide range of applications, whether it's for vision or across the body."
NEI launches iPS cell therapy trial for dry AMD
Nearly a decade ago, Jamie Anderson hit his highest weight ever: 618 pounds. Depression drove him to eat and eat. He tried all kinds of diets, losing and regaining weight again and again. Then, four years ago, a friend nudged him to join a gym, and with a trainer's guidance, he embarked on a life-altering path.
Ethicists become particularly alarmed when medical crowdfunding appeals are for scientifically unfounded and potentially harmful interventions.
"The big catalyst for all of this is, I was diagnosed as a diabetic," says Anderson, a 46-year-old sales associate in the auto care department at Walmart. Within three years, he was down to 276 pounds but left with excess skin, which sagged from his belly to his mid-thighs.
Plastic surgery would cost $4,000 more than the sum his health insurance approved. That's when Anderson, who lives in Cabot, Arkansas, a suburb outside of Little Rock, turned to online crowdfunding to raise money. In a few months last year, current and former co-workers and friends of friends came up with that amount, covering the remaining expenses for the tummy tuck and overnight hospital stay.
The crowdfunding site that he used, CoFund Health, aimed to give his donors some peace of mind about where their money was going. Unlike GoFundMe and other platforms that don't restrict how donations are spent, Anderson's funds were loaded on a debit card that only worked at health care providers, so the donors "were assured that it was for medical bills only," he says.
CoFund Health was started in January 2019 in response to concerns about the legitimacy of many medical crowdfunding campaigns. As crowdfunding for health-related expenses has gained more traction on social media sites, with countless campaigns seeking to subsidize the high costs of care, it has given rise to some questionable transactions and legitimate ethical concerns.
Common examples of alleged fraud have involved misusing the donations for nonmedical purposes, feigning or embellishing the story of one's own unfortunate plight or that of another person, or impersonating someone else with an illness. Ethicists become particularly alarmed when medical crowdfunding appeals are for scientifically unfounded and potentially harmful interventions.
About 20 percent of American adults reported giving to a crowdfunding campaign for medical bills or treatments, according to a survey by AmeriSpeak Spotlight on Health from NORC, formerly called the National Opinion Research Center, a non-partisan research institution at the University of Chicago. The self-funded poll, conducted in November 2019, included 1,020 interviews with a representative sample of U.S. households. Researchers cited a 2019 City University of New York-Harvard study, which noted that medical bills are the most common basis for declaring personal bankruptcy.
Some experts contend that crowdfunding platforms should serve as gatekeepers in prohibiting campaigns for unproven treatments. Facing a dire diagnosis, individuals may go out on a limb to try anything and everything to prolong and improve the quality of their lives.
They may enroll in well-designed clinical trials, or they could fall prey "to snake oil being sold by people out there just making a buck," says Jeremy Snyder, a health sciences professor at Simon Fraser University in British Columbia, Canada, and the lead author of a December 2019 article in The Hastings Report about crowdfunding for dubious treatments.
For instance, crowdfunding campaigns have sought donations for homeopathic healing for cancer, unapproved stem cell therapy for central nervous system injury, and extended antibiotic use for chronic Lyme disease, according to an October 2018 report in the Journal of the American Medical Association.
Ford Vox, the lead author and an Atlanta-based physician specializing in brain injury, maintains that a repository should exist to monitor the outcomes of experimental treatments. "At the very least, there ought to be some tracking of what happens to the people the funds are being raised for," he says. "It would be great for an independent organization to do so."
"Even if it appears like a good cause, consumers should still do some research before donating to a crowdfunding campaign."
The Federal Trade Commission, the national consumer watchdog, cautions online that "it might be impossible for you to know if the cause is real and if the money actually gets to the intended recipient." Another caveat: Donors can't deduct contributions to individuals on tax returns.
"Even if it appears like a good cause, consumers should still do some research before donating to a crowdfunding campaign," says Malini Mithal, associate director of financial practices at the FTC. "Don't assume all medical treatments are tested and safe."
Before making any donation, it would be wise to check whether a crowdfunding site offers some sort of guarantee if a campaign ends up being fraudulent, says Kristin Judge, chief executive and founder of the Cybercrime Support Network, a Michigan-based nonprofit that serves victims before, during, and after an incident. They should know how the campaign organizer is related to the intended recipient and note whether any direct family members and friends have given funds and left supportive comments.
Donating to vetted charities offers more assurance than crowdfunding that the money will be channeled toward helping someone in need, says Daniel Billingsley, vice president of external affairs for the Oklahoma Center of Nonprofits. "Otherwise, you could be putting money into all sorts of scams." There is "zero accountability" for the crowdfunding site or the recipient to provide proof that the dollars were indeed funneled into health-related expenses.
Even if donors may have limited recourse against scammers, the "platforms have an ethical obligation to protect the people using their site from fraud," says Bryanna Moore, a postdoctoral fellow at Baylor College of Medicine's Center for Medical Ethics and Health Policy. "It's easy to take advantage of people who want to be charitable."
There are "different layers of deception" on a broad spectrum of fraud, ranging from "outright lying for a self-serving reason" to publicizing an imaginary illness to collect money genuinely needed for basic living expenses. With medical campaigns being a top category among crowdfunding appeals, it's "a lot of money that's exchanging hands," Moore says.
The advent of crowdfunding "reveals and, in some ways, reinforces a health care system that is totally broken," says Jessica Pierce, a faculty affiliate in the Center for Bioethics and Humanities at the University of Colorado Anschutz Medical Campus in Denver. "The fact that people have to scrounge for money to get life-saving treatment is unethical."
Crowdfunding also highlights socioeconomic and racial disparities by giving an unfair advantage to those who are social-media savvy and capable of crafting a compelling narrative that attracts donors. Privacy issues enter into the picture as well, because telling that narrative entails revealing personal details, Pierce says, particularly when it comes to children, "who may not be able to consent at a really informed level."
CoFund Health, the crowdfunding site on which Anderson raised the money for his plastic surgery, offers to help people write their campaigns and copy edit for proper language, says Matthew Martin, co-founder and chief executive officer. Like other crowdfunding sites, it retains a few percent of the donations for each campaign. Martin is the husband of Anderson's acquaintance from high school.
So far, the site, which is based in Raleigh, North Carolina, has hosted about 600 crowdfunding campaigns, some completed and some still in progress. Campaigns have raised as little as $300 to cover immediate dental expenses and as much as $12,000 for cancer treatments, Martin says, but most have set a goal between $5,000 and $10,000.
Whether or not someone's campaign is based on fact or fiction remains for prospective donors to decide.
The services could be cosmetic—for example, a breast enhancement or reduction, laser procedures for the eyes or skin, and chiropractic care. A number of campaigns have sought funding for transgender surgeries, which many insurers consider optional, he says.
In July 2019, a second site was hatched out of pet owners' requests for assistance with their dogs' and cats' medical expenses. Money raised on CoFund My Pet can only be used at veterinary clinics. Martin says the debit card would be declined at other merchants, just as its CoFund Health counterpart for humans will be rejected at places other than health care facilities, dental and vision providers, and pharmacies.
Whether or not someone's campaign is based on fact or fiction remains for prospective donors to decide. If a donor were to regret a transaction, he says the site would reach out to the campaign's owner but ultimately couldn't force a refund, Martin explains, because "it's hard to chase down fraud without having access to people's health records."
In some crowdfunding campaigns, the individual needs some or all the donated resources to pay for travel and lodging at faraway destinations to receive care, says Snyder, the health sciences professor and crowdfunding report author. He suggests people only give to recipients they know personally.
"That may change the calculus a little bit," tipping the decision in favor of donating, he says. As long as the treatment isn't harmful, the funds are a small gesture of support. "There's some value in that for preserving hope or just showing them that you care."
Coronavirus Misinformation: How You Can Fight Back
When it comes to fighting the new coronavirus threat, the truth is one of the few things more crucial than a gallon of hand sanitizer. But these days, both can be hard to find if you don't know where to look.
"Humans are wired to respond to emotional triggers and share misinformation if it reinforces existing beliefs and prejudices."
While it's only been around for a few months, COVID-19 has already produced an ever-expanding universe of conspiracy theories about its origins, its spread, and the danger it poses. Meanwhile, fraudulent cures and myths about treatments threaten to upend public health efforts to contain the epidemic.
But ordinary citizens aren't helpless. Research offers insight into why we're susceptible to misinformation, and armies of fact-checkers can tell us what's real and what isn't. Meanwhile, experts are offering tips about how we can effectively promote facts whether we're chatting with a stranger at the post office or challenging a cousin on Facebook.
Here a four-part strategy to help you fight back against the Coronavirus Misinformation Industrial Complex:
Understand How Bogus Beliefs Work
That crank on the Internet may be your neighbor. Or maybe even you.
According to a 2014 study published in JAMA Internal Medicine, nearly half of American surveyed said they believed in at least one grand medical conspiracy theory. Twenty percent agreed, for example, that cell phones cause cancer but officials won't do anything because of corporate pressure, and 37 percent believed an elaborate conspiracy theory about the suppression of natural cancer cures. "Although it is common to disparage adherents of conspiracy theories as a delusional fringe of paranoid cranks, our data suggest that medical conspiracy theories are widely known, broadly endorsed, and highly predictive of many common health behaviors," the study authors write.
In an interview with leapsmag, study lead author Eric Oliver said we're drawn to "conspiracy theories that correspond with our intuitions."
"In the case of medicine, I think there are three big factors: Fears of Big Pharma -- a large percentage of Americans have a distorted sense of what pharmaceutical companies are capable of -- fears of government, and fears of contagion," said Oliver, a political scientist at the University of Chicago.
Why does it matter if people believe in conspiracy theories about coronavirus? As Oliver's study notes, conspiracy theorists are less likely to rely on traditional medicine, get flu shots, or go to annual check-ups. They could be especially susceptible to disease and inappropriate treatment.
Joseph Uscinski, a professor of political science at the University of Miami who studies conspiracies, elaborated on how this works. "You could have people who think coronavirus is fake and say, 'I'm not going to wash my hand or take preventive action. This is the media making something up, or this is just a plot for the pharmaceutical companies to sell a vaccine.' If you have a lot of people acting that way, that increases the ability of the virus to spread."
Get the Facts from the Experts
How can you avoid being a misinformation source? Educate yourself to make sure you're not spouting fake facts yourself with the instant ease that the Internet allows. "Humans are wired to respond to emotional triggers and share misinformation if it reinforces existing beliefs and prejudices," writes misinformation scholar Claire Wardle in a 2019 Scientific American commentary. That means you too.
For coronavirus facts, experts recommend looking to the websites of government agencies (such as the CDC, World Health Organization and National Institutes of Health) and top-tier medical organizations (Mayo Clinic, Infectious Disease Society of America).
Respected mainstream news outlets such as The New York Times and National Public Radio offer extensive original reporting on the coronavirus threat. While some news outlets still require users to pay to get full access to stories, others have dropped their paywalls and made coronavirus content free to all. These include the Seattle Times, Bloomberg News and the medical news site Stat.
Locally, look to your region's public health department, news outlets, and medical organizations such as hospitals and health plans.
The Poynter Institute, a journalism watchdog outfit, offers a helpful guide to evaluating what you read about coronavirus. And a paid service called NewsGuard offers a browser plug-in that provides a "trust rating" for popular news sites. "Our goal is to teach news literacy–and we hope all websites will earn green ratings and be generally reliable to consumers," the NewsGuard site says.
"As we combat misinformation, we also need to be mindful of the fact that we're dealing with a lot of uncertainty."
Remember, however, that scientists and physicians are learning more about the coronavirus each day. Assumptions about the virus will change as more information comes in, and there are still many questions about crucial topics like its fatality rate and the ways the virus spreads. You should expect that reliable sources – and experts – may provide conflicting information.
"As we combat misinformation, we also need to be mindful of the fact that we're dealing with a lot of uncertainty," says Boston cardiologist and author Dr. Haider Warraich of Brigham and Women's Hospital.
Double-Check Suspicious Information
No, the coronavirus wasn't created in a Winnipeg laboratory. You can't kill it by drinking bleach or frolicking in snow. And, as the French Health Ministry helpfully advised on Twitter, "Non, La cocaïne NE protège PAS contre le #COVID19" – "No, cocaine does NOT prevent Covid-19."
Facebook, YouTube and Twitter are all trying to remove fake or misleading coronavirus content, The New York Times reported, and "all said they were making efforts to point people back to reliable sources of medical information." Still, as the Times reports, bogus cures and conspiracy theories are rampant across social media and beyond.
Fortunately, there are many fact-checking resources. Turn to them for ammunition before you amplify – or challenge -- a coronavirus claim that seems suspicious.
Helpful myth-busting resources include:
** The venerable fact-checking site Snopes.com, which has checked multiple coronavirus claims. (Example: No, garlic water won't cure coronavirus.)
** The World Health Organization. (Example: No, mosquito bites can't transmit coronavirus)
** FactCheck.org. (Example: No, a disgraced Harvard scientist wasn't arrested for creating the coronavirus.)
** PolitiFact.org. (Example: No, the coronavirus is not just "the common cold.")
** The International Fact-Checking Network, accessible via the social-media hashtags #CoronaVirusFacts and #DatosCoronaVirus.
Correct Others With Caution
On social media, anger and sarcasm make up a kind of common tongue. But sick burns won't force misinformed people see the light. Instead, try a gentler approach.
"The most important thing would be to first acknowledge their anxieties rather than first trying to rationalize away their misbeliefs," said the University of Chicago's Oliver. "People embrace misinformation and conspiracy theories because they are afraid and trying to make sense of the world. Their beliefs serve a strong emotional function and will be defended as such. Trying to rationalize with them or argue with them may be counterproductive if one can't first put them at some ease."
Turn yourself into a source of coronavirus facts and a bulwark against the fake, misleading, and fraudulent.
So what can you do? "There will never be a magic bullet," the University of Miami's Uscinski said, but one approach is to highlight reliable information from sources that the person trusts, such as news outlets (think MSNBC or Fox News) or politicians.
However, don't waste your time. "If you have people who are believing in the craziest thing, they're probably not going to offer a rational conversation," he said. And, he added, there's an alternative to correcting others: Turn yourself into a source of coronavirus facts and a bulwark against the fake, misleading, and fraudulent. "We can be preventive and inoculate people against these beliefs," he said, "by flooding the information environment with proper information as much as possible."