Researchers Behaving Badly: Known Frauds Are "the Tip of the Iceberg"
Last week, the whistleblowers in the Paolo Macchiarini affair at Sweden's Karolinska Institutet went on the record here to detail the retaliation they suffered for trying to expose a star surgeon's appalling research misconduct.
Scientific fraud of the type committed by Macchiarini is rare, but studies suggest that it's on the rise.
The whistleblowers had discovered that in six published papers, Macchiarini falsified data, lied about the condition of patients and circumvented ethical approvals. As a result, multiple patients suffered and died. But Karolinska turned a blind eye for years.
Scientific fraud of the type committed by Macchiarini is rare, but studies suggest that it's on the rise. Just this week, for example, Retraction Watch and STAT together broke the news that a Harvard Medical School cardiologist and stem cell researcher, Piero Anversa, falsified data in a whopping 31 papers, which now have to be retracted. Anversa had claimed that he could regenerate heart muscle by injecting bone marrow cells into damaged hearts, a result that no one has been able to duplicate.
A 2009 study published in the Public Library of Science (PLOS) found that about two percent of scientists admitted to committing fabrication, falsification or plagiarism in their work. That's a small number, but up to one third of scientists admit to committing "questionable research practices" that fall into a gray area between rigorous accuracy and outright fraud.
These dubious practices may include misrepresentations, research bias, and inaccurate interpretations of data. One common questionable research practice entails formulating a hypothesis after the research is done in order to claim a successful premise. Another highly questionable practice that can shape research is ghost-authoring by representatives of the pharmaceutical industry and other for-profit fields. Still another is gifting co-authorship to unqualified but powerful individuals who can advance one's career. Such practices can unfairly bolster a scientist's reputation and increase the likelihood of getting the work published.
The above percentages represent what scientists admit to doing themselves; when they evaluate the practices of their colleagues, the numbers jump dramatically. In a 2012 study published in the Journal of Research in Medical Sciences, researchers estimated that 14 percent of other scientists commit serious misconduct, while up to 72 percent engage in questionable practices. While these are only estimates, the problem is clearly not one of just a few bad apples.
In the PLOS study, Daniele Fanelli says that increasing evidence suggests the known frauds are "just the 'tip of the iceberg,' and that many cases are never discovered" because fraud is extremely hard to detect.
Essentially everyone wants to be associated with big breakthroughs, and they may overlook scientifically shaky foundations when a major advance is claimed.
In addition, it's likely that most cases of scientific misconduct go unreported because of the high price of whistleblowing. Those in the Macchiarini case showed extraordinary persistence in their multi-year campaign to stop his deadly trachea implants, while suffering serious damage to their careers. Such heroic efforts to unmask fraud are probably rare.
To make matters worse, there are numerous players in the scientific world who may be complicit in either committing misconduct or covering it up. These include not only primary researchers but co-authors, institutional executives, journal editors, and industry leaders. Essentially everyone wants to be associated with big breakthroughs, and they may overlook scientifically shaky foundations when a major advance is claimed.
Another part of the problem is that it's rare for students in science and medicine to receive an education in ethics. And studies have shown that older, more experienced and possibly jaded researchers are more likely to fudge results than their younger, more idealistic colleagues.
So, given the steep price that individuals and institutions pay for scientific misconduct, what compels them to go down that road in the first place? According to the JRMS study, individuals face intense pressures to publish and to attract grant money in order to secure teaching positions at universities. Once they have acquired positions, the pressure is on to keep the grants and publishing credits coming in order to obtain tenure, be appointed to positions on boards, and recruit flocks of graduate students to assist in research. And not to be underestimated is the human ego.
Paolo Macchiarini is an especially vivid example of a scientist seeking not only fortune, but fame. He liberally (and falsely) claimed powerful politicians and celebrities, even the Pope, as patients or admirers. He may be an extreme example, but we live in an age of celebrity scientists who bring huge amounts of grant money and high prestige to the institutions that employ them.
The media plays a significant role in both glorifying stars and unmasking frauds. In the Macchiarini scandal, the media first lifted him up, as in NBC's laudatory documentary, "A Leap of Faith," which painted him as a kind of miracle-worker, and then brought him down, as in the January 2016 documentary, "The Experiments," which chronicled the agonizing death of one of his patients.
Institutions can also play a crucial role in scientific fraud by putting more emphasis on the number and frequency of papers published than on their quality. The whole course of a scientist's career is profoundly affected by something called the h-index. This is a number based on both the frequency of papers published and how many times the papers are cited by other researchers. Raising one's ranking on the h-index becomes an overriding goal, sometimes eclipsing the kind of patient, time-consuming research that leads to true breakthroughs based on reliable results.
Universities also create a high-pressured environment that encourages scientists to cut corners. They, too, place a heavy emphasis on attracting large monetary grants and accruing fame and prestige. This can lead them, just as it led Karolinska, to protect a star scientist's sloppy or questionable research. According to Dr. Andrew Rosenberg, who is director of the Center for Science and Democracy at the U.S.-based Union of Concerned Scientists, "Karolinska defended its investment in an individual as opposed to the long-term health of the institution. People were dying, and they should have outsourced the investigation from the very beginning."
Having institutions investigate their own practices is a conflict of interest from the get-go, says Rosenberg.
Scientists, universities, and research institutions are also not immune to fads. "Hot" subjects attract grant money and confer prestige, incentivizing scientists to shift their research priorities in a direction that garners more grants. This can mean neglecting the scientist's true area of expertise and interests in favor of a subject that's more likely to attract grant money. In Macchiarini's case, he was allegedly at the forefront of the currently sexy field of regenerative medicine -- a field in which Karolinska was making a huge investment.
The relative scarcity of resources intensifies the already significant pressure on scientists. They may want to publish results rapidly, since they face many competitors for limited grant money, academic positions, students, and influence. The scarcity means that a great many researchers will fail while only a few succeed. Once again, the temptation may be to rush research and to show it in the most positive light possible, even if it means fudging or exaggerating results.
Though the pressures facing scientists are very real, the problem of misconduct is not inevitable.
Intense competition can have a perverse effect on researchers, according to a 2007 study in the journal Science of Engineering and Ethics. Not only does it place undue pressure on scientists to succeed, it frequently leads to the withholding of information from colleagues, which undermines a system in which new discoveries build on the previous work of others. Researchers may feel compelled to withhold their results because of the pressure to be the first to publish. The study's authors propose that more investment in basic research from governments could alleviate some of these competitive pressures.
Scientific journals, although they play a part in publishing flawed science, can't be expected to investigate cases of suspected fraud, says the German science blogger Leonid Schneider. Schneider's writings helped to expose the Macchiarini affair.
"They just basically wait for someone to retract problematic papers," he says.
He also notes that, while American scientists can go to the Office of Research Integrity to report misconduct, whistleblowers in Europe have no external authority to whom they can appeal to investigate cases of fraud.
"They have to go to their employer, who has a vested interest in covering up cases of misconduct," he says.
Science is increasingly international. Major studies can include collaborators from several different countries, and he suggests there should be an international body accessible to all researchers that will investigate suspected fraud.
Ultimately, says Rosenberg, the scientific system must incorporate trust. "You trust co-authors when you write a paper, and peer reviewers at journals trust that scientists at research institutions like Karolinska are acting with integrity."
Without trust, the whole system falls apart. It's the trust of the public, an elusive asset once it has been betrayed, that science depends upon for its very existence. Scientific research is overwhelmingly financed by tax dollars, and the need for the goodwill of the public is more than an abstraction.
The Macchiarini affair raises a profound question of trust and responsibility: Should multiple co-authors be held responsible for a lead author's misconduct?
Karolinska apparently believes so. When the institution at last owned up to the scandal, it vindictively found Karl Henrik-Grinnemo, one of the whistleblowers, guilty of scientific misconduct as well. It also designated two other whistleblowers as "blameworthy" for their roles as co-authors of the papers on which Macchiarini was the lead author.
As a result, the whistleblowers' reputations and employment prospects have become collateral damage. Accusations of research misconduct can be a career killer. Research grants dry up, employment opportunities evaporate, publishing becomes next to impossible, and collaborators vanish into thin air.
Grinnemo contends that co-authors should only be responsible for their discrete contributions, not for the data supplied by others.
"Different aspects of a paper are highly specialized," he says, "and that's why you have multiple authors. You cannot go through every single bit of data because you don't understand all the parts of the article."
This is especially true in multidisciplinary, translational research, where there are sometimes 20 or more authors. "You have to trust co-authors, and if you find something wrong you have to notify all co-authors. But you couldn't go through everything or it would take years to publish an article," says Grinnemo.
Though the pressures facing scientists are very real, the problem of misconduct is not inevitable. Along with increased support from governments and industry, a change in academic culture that emphasizes quality over quantity of published studies could help encourage meritorious research.
But beyond that, trust will always play a role when numerous specialists unite to achieve a common goal: the accumulation of knowledge that will promote human health, wealth, and well-being.
[Correction: An earlier version of this story mistakenly credited The New York Times with breaking the news of the Anversa retractions, rather than Retraction Watch and STAT, which jointly published the exclusive on October 14th. The piece in the Times ran on October 15th. We regret the error.]
Why the Pope Should Officially Embrace Biotechnology
[Editor's Note: This essay is in response to our current Big Question series: "How can the religious and scientific communities work together to foster a culture that is equipped to face humanity's biggest challenges?"]
In May 2015, Pope Francis issued an encyclical with the subtitle "On Care for Our Common Home." The letter addressed various environmental issues, such as pollution and climate change, and it reminded all of us that we are to steward the Earth, not plunder it.
Without question, biotechnology has saved the lives of millions – perhaps billions – of people.
The Pope's missive demonstrates that he is both theologically sound and scientifically literate, a very rare combination. That is why he should now author an encyclical urging the world to embrace the life-giving promise of biotechnology.
Without question, biotechnology has saved the lives of millions – perhaps billions – of people. Arguably, vaccines were the most important invention in the history of mankind. It is thought that, in the 20th century alone, at least 300 million people were killed by smallpox. Today, the number is zero, thanks to vaccination. Other killers, such as measles, diphtheria, meningitis, and diarrhea, are kept at bay because of vaccines.
Biotechnology has also saved the lives of diabetics. At one time, insulin was extracted from pig pancreases, and there were fears that we would run out of it. Then, in the 1970s, crucial advances in biotechnology allowed for the gene that encodes human insulin to be expressed in bacteria. Today, diabetics can get extremely pure insulin thanks to this feat of genetic modification.
Likewise, genetic modification has improved the environment and the lives of farmers all over the world, none more so than those living in developing countries. According to a meta-analysis published in PLoS ONE, GMOs have "reduced chemical pesticide use by 37%, increased crop yields by 22%, and increased farmer profits by 68%."
Even better, GMOs also could help improve the lives of non-farmers. In poor parts of the world, malnutrition is still extremely common. People whose diets consist mostly of rice, for example, often suffer from vitamin A deficiency, which can lead to blindness. Golden Rice, which was genetically modified to contain a vitamin A precursor, was created and given away for free in an act of humanitarianism. Other researchers have created a genetically modified cassava to help combat iron and zinc deficiencies among children in Africa.
Despite these groundbreaking advances, the public is turning against biotechnology.
Biotechnology has also helped women with mitochondrial disease bear healthy children. Children inherit their mitochondria, the powerhouses of our cells, solely from their mothers. Mitochondrial defects can have devastating health consequences. Using what is colloquially called the "three-parent embryo technique," a healthy woman donates an egg. The nucleus of that egg is removed, and that of the mother-to-be is put in its place. Then, the egg is fertilized using conventional in vitro fertilization. In April 2016, the world's first baby was born using this technique.
Yet, despite these groundbreaking advances, the public is turning against biotechnology. Across America and Europe, anti-vaccine activists have helped usher in a resurgence of entirely preventable diseases, such as measles. Anti-GMO activists have blocked the implementation of Golden Rice. And other activists decry reproductive technology as "playing God."
Nonsense. These technologies improve overall welfare and save lives. Those laudable goals are shared by all the world's major religions as part of their efforts to improve the human condition. That is why it is vitally important, if science is to succeed in eradicating illness, that it gets a full-throated endorsement from powerful religious leaders.
In his 2015 encyclical, Pope Francis wrote:
Any technical solution which science claims to offer will be powerless to solve the serious problems of our world if humanity loses its compass, if we lose sight of the great motivations which make it possible for us to live in harmony, to make sacrifices and to treat others well.
He is correct. Indeed, when people are protesting life-saving vaccines, we have lost not only our moral compass but our intellect, too.
Imagine the impact he could have if Pope Francis issued an encyclical titled "On Protecting Our Most Vulnerable." He could explain that some children, stricken with cancer or suffering from an immunological disease, are unable to receive vaccines. Therefore, we all have a moral duty to be vaccinated in order to protect them through herd immunity.
Or imagine the potential impact of an encyclical titled "On Feeding the World," in which the Pope explained that rich countries have an obligation to poorer ones to feed them by all means necessary, including the use of biotechnology. If Muslim, Buddhist, and Hindu scholars throughout Asia and Africa also embraced the message, its impact could be multiplied.
In order to be successful, science needs religion; in order to be practical, religion needs science.
In order to be successful, science needs religion; in order to be practical, religion needs science.
Unfortunately, in discussions of the relationship between science and religion, we too often focus on the few areas in which they conflict. But this misses a great opportunity. By combining technological advances with moral authority, science and religion can work together to save the world.
[Ed. Note: Don't miss the other perspectives in this Big Question series, from a Rabbi/M.D. and a Reverend/molecular geneticist.]
Viv spent nearly an hour choosing her body.
She considered going as her eight year-old self. She would stand eye-to-eye with her father in his hospital bed, shedding tears and crying: please don't go, daddy. But that was too obvious. It would offend him.
He became data coursing through a network, able to embody any form, to outlive physical decay.
She considered her eighteen year-old self. She would lean over him, scrawny and tall, her lips trembling with anger: you're being selfish, dad. But that would lead to shouting.
She considered every form, even reviving people from the past: her mother, her grandfather, her little sister Mary. How would her father react to Mary walking in? He would think himself dead. She could whisper a message to him: Stay alive, dad. God commands it.
In the end, Viv chose the look of her last days as a biological person. Thirty-one years old, her auburn hair cut short, her black eyes full of longing. She watched the body print in silicon over robotic armature.
When it blinked to life, Viv stood in front of a mirror. Her face was appropriately somber, her mind in sync with her new muscles. Without thinking, she stretched her arms, arched her body, twirled on her tiptoes. She had forgotten the pleasure of sensation.
"I should do this…" The voice resonated through her. She could not help but smile. "I should do this more often… often… often." Every repetition thrilled her with sound. She began to sing an old favorite: "Times have changed… and we've often…"
But she stopped herself. This was not a day for singing.
Viv clothed her body in a blue dress, packed her tablet in a briefcase, stood in front of the mirror one last time. "I'll be there in five," she said aloud, though she did not need to.
A man's voice answered in her mind: I'm not coming.
"Gabe…"
There's no point, said the voice. We know what he'll say.
"We have to try."
I won't see him dying, Viv.
The clenching of her jaw felt like the old days. Her brother made a habit of last-minute decisions, without concern for how they affected other people, most often her.
She remembered the day he became an everperson. It was soon after their mother's death. They were supposed to visit their father in mourning, but Gabe disappeared without explanation. Viv took the full burden of solace on herself. She sat with her father in a small room, with an old Persian rug and stale furniture. His mustache was beginning to gray, his eyes beginning to wrinkle. "She's with your sister now," he said. "Your mom and Mary, I can…" He leaned in to whisper, "I can almost hear them, at night, laughing on the other side. They tell me to wait… they tell me to wait." Viv nodded for him, pretending to believe, wishing she could.
Gabe did not return her calls that evening. The next day, she began to worry. The day after, she began to look. He made no effort to hide, he simply neglected to tell her the new plan.
Gabe had taken the money from his inheritance, and booked himself an everence. It was something new back then. Viv did not understand the science, but she knew it was a destructive process. His physical brain was destroyed by lasers that scanned it neuron by neuron, creating a digital replica. He became data coursing through a network, able to embody any form, to outlive physical decay. He became an everperson.
It took three days to complete. Viv went to the facility, a converted warehouse by the Bay Bridge. She watched the new Gabe being printed over robotic armature, taking the form of his last biological self, to help with the transition. When he blinked to life, she did not know if he would be the same person, or an imperfect copy of an imperfect copy. But Gabe was totally oblivious to the pain he caused her by disappearing in that way. No robot, she thought, could be so callous.
When Viv made her own decision to everize, she deliberated for weeks, thinking through the consequences and conversations to come. Afterwards, she sat with her father in that same small room, with the Persian rug older, the furniture staler, a new cat purring at his feet.
"But it's suicide," he said.
"It's the opposite, dad. It's eternal life."
"You'd be a robot. You wouldn't be you."
"Gabe's the same as he ever was," she noted the resentment in her voice. "He's just not… physical, until he wants to be."
Her father exhaled an Arabic phrase he was using more often in his old age. La hawla wa la quwata illa billah. She had never learned his native tongue, but she looked up the phrase to understand him better. It meant something like: there is no power except in God. It was a sigh of resignation.
"Vivian," he said eventually, "Your soul is not your brain. Your soul lives on. If you kill yourself, you... it's unforgivable. Don't you want to see mom in heaven? Mary? Me?"
She wanted to believe. She wanted painfully. But when she spoke, it was barely a whisper. "I don't think that will happen, dad."
Fewer biological people meant little need for hospitals, or doctors. It would close soon.
It was the first she had ever confessed to him about God or Heaven. In as steady a voice as he could manage, her father said: "You're an adult, Viv. You do what you think is best."
She came to visit sometimes, as an everperson. He could not tell at first. But as the years went by, as his eyes wrinkled, and his hair grayed, he noticed that Viv never aged. One day he stopped talking to her. Another she stopped coming.
Now he was waiting out the last days of his life alone in a hospital bed. Viv did not want to say goodbye. It seemed such a waste.
You don't have to, Gabe spoke into her mind. Get him to sign, say anything, say it's for selling the house. Once we have full power of attorney, we can decide for him.
"It's not right." She noticed herself speaking aloud on the hoverbus. Nine nervous faces turned to her.
It's not right, she continued in her mind. Dad never forced us to pray, never forced us to —
That was mom.
But he loved her. He never changed her mind, he raised us to question, and he quietly believed. He has every right to live his way, just like we did.
To live. Not to die... When he's an everperson, he'll thank us.
That gave her pause. It might be true. She remembered her first moments as an everperson, suddenly linked to countless other minds, waking to the full expanse of human knowledge like sunlight through an open window, breathless and unexpected.
Still, she said, it's not right.
So you want him to die?
I want to convince him.
And what if you don't? There was panic in his voice. Gabe steadied himself. You brought your tablet, Viv. You know what it's for. Get him to sign.
And what if I don't?
I'll figure something out, with or without you. I won't let him die, Viv. Not this day and age.
Viv kept quiet the rest of her way there. She played memories in her mind, of every conversation she ever had with her father, every time he read her a verse or taught her a parable. She looked for a way to convince him, some doubt, some chink in his armor of belief. But she got distracted by the world outside.
It was strange to pass for a time through physical space. It took longer than she expected. Now watching the sunlight refract through the hoverbus window, she was mesmerized. Every sensation felt more real, more vivid than her memory. "I should do this more often," she said aloud.
The hospital smelled like death. It had fallen into disrepair since her mother's illness. Fewer biological people meant little need for hospitals, or doctors. It would close soon, she thought. Her footsteps echoed through the halls, along with the sounds of old televisions playing old films to keep the patients company.
The room she entered had no sound, except the whirring machines. No light, except an eerie glow filtering through the curtains. The figure on the bed was her father, his breathing strained, his skin cracked like the desert. She closed the door behind her.
When her father turned, she saw a flicker of joy in his eyes. It disappeared.
"La hawla wa la… I thought it was her."
"I am her."
He winced. "She died some twenty years ago."
Viv sat next to him. The machines whirred around them, keeping his body alive another day, or hour, or minute. "It doesn't look good, dad."
"I know."
"You broke a promise."
He held her gaze. "I did?"
"You said we'd see the bats in Australia."
"You were scared of bats."
"And you said they were cute in Oz, the giant bats, like upside down puppies chewing bananas."
He smiled, but that was a long time ago. "Your mom was alive then… Gabe… You were alive…"
"I'm alive now, dad. Look at me. I'm Viv. Vivian Fatema. Your daughter. Half mom, half you. I'm the same person I was."
His eyes shifted. She sensed he wanted to believe. She held his hand and squeezed it. She felt him squeezing back. "I want you to stay, dad."
"There's nothing for me here."
"I'm here."
"You don't love me, Viv. You're a robot."
His hand let go. "You're there… I don't know where. I have a lot to answer for, Viv. I pray. I pray every day, five times a day, sometimes more. I pray that God forgive you for what you did, forgive me for my part, forgive Gabriel... I wish I could stay, love, but… Everyone I love is on the other side."
It hurt her to say the next words: "It's not real, dad."
"Of course you'd say that." He turned his body away from her.
"Please, dad."
She listened to his breathing.
"I love you," she said.
"You don't love me, Viv. You're a robot."
She lowered her head against the bed. She kneeled for countless breaths. It took all her strength to stand up again.
Viv took her briefcase, pulled out her tablet. She stood tapping at the screen for some time. The clenching of her jaw felt like the old days.
"Before I go, I need you to sign something. It's a power of attorney for the house. We can't sell it without you."
"You're selling the house?"
She shrugged. "It's no use to a robot."
His bony finger signed the screen without reading it. She kissed his forehead goodbye.
"Viv?" She stopped. "Before you go, could you open the curtains?"
She did. Her last image of him was a frail old body gazing at the moving clouds.
On the hoverbus home, Viv turned against the window outside. She pressed the briefcase to her like a hug, her mechanical heart thumping against it. Every heartbeat brought a memory back of her biological life. "I should do this more…" She whispered to herself, not caring who might hear. The sunset turned violet.
You made him sign. Gabe sounded like triumph.
"I did."
You did the right thing.
"I know."
Let me see.
She pulled out her tablet and, with a touch, uploaded the file.
Where's my name? Gabe asked. I only see your name.
"I changed it."
What do you mean you "changed it"?
"I changed my mind last minute, Gabe. I didn't think to tell you."
That's funny, sis. Very funny.
"It's not funny at all, Gabe. It's dead serious. I have power of attorney. I'm going to bury him next to mom and Mary."
No… There's no way.
"It's my choice now."
I can't watch him go, Viv. I can't. Don't be selfish.
"I'll miss him." She felt a pain in her chest. "I'll miss him too." Her voice was different now. "But it's what he wanted."
Gabe left her. She heard nothing but her thoughts. Unbearable thoughts.
Viv turned to the darkening world outside. She found her reflection instead, her reflection in tears. She saw her father's eyes.