Researchers Behaving Badly: Known Frauds Are "the Tip of the Iceberg"
Last week, the whistleblowers in the Paolo Macchiarini affair at Sweden's Karolinska Institutet went on the record here to detail the retaliation they suffered for trying to expose a star surgeon's appalling research misconduct.
Scientific fraud of the type committed by Macchiarini is rare, but studies suggest that it's on the rise.
The whistleblowers had discovered that in six published papers, Macchiarini falsified data, lied about the condition of patients and circumvented ethical approvals. As a result, multiple patients suffered and died. But Karolinska turned a blind eye for years.
Scientific fraud of the type committed by Macchiarini is rare, but studies suggest that it's on the rise. Just this week, for example, Retraction Watch and STAT together broke the news that a Harvard Medical School cardiologist and stem cell researcher, Piero Anversa, falsified data in a whopping 31 papers, which now have to be retracted. Anversa had claimed that he could regenerate heart muscle by injecting bone marrow cells into damaged hearts, a result that no one has been able to duplicate.
A 2009 study published in the Public Library of Science (PLOS) found that about two percent of scientists admitted to committing fabrication, falsification or plagiarism in their work. That's a small number, but up to one third of scientists admit to committing "questionable research practices" that fall into a gray area between rigorous accuracy and outright fraud.
These dubious practices may include misrepresentations, research bias, and inaccurate interpretations of data. One common questionable research practice entails formulating a hypothesis after the research is done in order to claim a successful premise. Another highly questionable practice that can shape research is ghost-authoring by representatives of the pharmaceutical industry and other for-profit fields. Still another is gifting co-authorship to unqualified but powerful individuals who can advance one's career. Such practices can unfairly bolster a scientist's reputation and increase the likelihood of getting the work published.
The above percentages represent what scientists admit to doing themselves; when they evaluate the practices of their colleagues, the numbers jump dramatically. In a 2012 study published in the Journal of Research in Medical Sciences, researchers estimated that 14 percent of other scientists commit serious misconduct, while up to 72 percent engage in questionable practices. While these are only estimates, the problem is clearly not one of just a few bad apples.
In the PLOS study, Daniele Fanelli says that increasing evidence suggests the known frauds are "just the 'tip of the iceberg,' and that many cases are never discovered" because fraud is extremely hard to detect.
Essentially everyone wants to be associated with big breakthroughs, and they may overlook scientifically shaky foundations when a major advance is claimed.
In addition, it's likely that most cases of scientific misconduct go unreported because of the high price of whistleblowing. Those in the Macchiarini case showed extraordinary persistence in their multi-year campaign to stop his deadly trachea implants, while suffering serious damage to their careers. Such heroic efforts to unmask fraud are probably rare.
To make matters worse, there are numerous players in the scientific world who may be complicit in either committing misconduct or covering it up. These include not only primary researchers but co-authors, institutional executives, journal editors, and industry leaders. Essentially everyone wants to be associated with big breakthroughs, and they may overlook scientifically shaky foundations when a major advance is claimed.
Another part of the problem is that it's rare for students in science and medicine to receive an education in ethics. And studies have shown that older, more experienced and possibly jaded researchers are more likely to fudge results than their younger, more idealistic colleagues.
So, given the steep price that individuals and institutions pay for scientific misconduct, what compels them to go down that road in the first place? According to the JRMS study, individuals face intense pressures to publish and to attract grant money in order to secure teaching positions at universities. Once they have acquired positions, the pressure is on to keep the grants and publishing credits coming in order to obtain tenure, be appointed to positions on boards, and recruit flocks of graduate students to assist in research. And not to be underestimated is the human ego.
Paolo Macchiarini is an especially vivid example of a scientist seeking not only fortune, but fame. He liberally (and falsely) claimed powerful politicians and celebrities, even the Pope, as patients or admirers. He may be an extreme example, but we live in an age of celebrity scientists who bring huge amounts of grant money and high prestige to the institutions that employ them.
The media plays a significant role in both glorifying stars and unmasking frauds. In the Macchiarini scandal, the media first lifted him up, as in NBC's laudatory documentary, "A Leap of Faith," which painted him as a kind of miracle-worker, and then brought him down, as in the January 2016 documentary, "The Experiments," which chronicled the agonizing death of one of his patients.
Institutions can also play a crucial role in scientific fraud by putting more emphasis on the number and frequency of papers published than on their quality. The whole course of a scientist's career is profoundly affected by something called the h-index. This is a number based on both the frequency of papers published and how many times the papers are cited by other researchers. Raising one's ranking on the h-index becomes an overriding goal, sometimes eclipsing the kind of patient, time-consuming research that leads to true breakthroughs based on reliable results.
Universities also create a high-pressured environment that encourages scientists to cut corners. They, too, place a heavy emphasis on attracting large monetary grants and accruing fame and prestige. This can lead them, just as it led Karolinska, to protect a star scientist's sloppy or questionable research. According to Dr. Andrew Rosenberg, who is director of the Center for Science and Democracy at the U.S.-based Union of Concerned Scientists, "Karolinska defended its investment in an individual as opposed to the long-term health of the institution. People were dying, and they should have outsourced the investigation from the very beginning."
Having institutions investigate their own practices is a conflict of interest from the get-go, says Rosenberg.
Scientists, universities, and research institutions are also not immune to fads. "Hot" subjects attract grant money and confer prestige, incentivizing scientists to shift their research priorities in a direction that garners more grants. This can mean neglecting the scientist's true area of expertise and interests in favor of a subject that's more likely to attract grant money. In Macchiarini's case, he was allegedly at the forefront of the currently sexy field of regenerative medicine -- a field in which Karolinska was making a huge investment.
The relative scarcity of resources intensifies the already significant pressure on scientists. They may want to publish results rapidly, since they face many competitors for limited grant money, academic positions, students, and influence. The scarcity means that a great many researchers will fail while only a few succeed. Once again, the temptation may be to rush research and to show it in the most positive light possible, even if it means fudging or exaggerating results.
Though the pressures facing scientists are very real, the problem of misconduct is not inevitable.
Intense competition can have a perverse effect on researchers, according to a 2007 study in the journal Science of Engineering and Ethics. Not only does it place undue pressure on scientists to succeed, it frequently leads to the withholding of information from colleagues, which undermines a system in which new discoveries build on the previous work of others. Researchers may feel compelled to withhold their results because of the pressure to be the first to publish. The study's authors propose that more investment in basic research from governments could alleviate some of these competitive pressures.
Scientific journals, although they play a part in publishing flawed science, can't be expected to investigate cases of suspected fraud, says the German science blogger Leonid Schneider. Schneider's writings helped to expose the Macchiarini affair.
"They just basically wait for someone to retract problematic papers," he says.
He also notes that, while American scientists can go to the Office of Research Integrity to report misconduct, whistleblowers in Europe have no external authority to whom they can appeal to investigate cases of fraud.
"They have to go to their employer, who has a vested interest in covering up cases of misconduct," he says.
Science is increasingly international. Major studies can include collaborators from several different countries, and he suggests there should be an international body accessible to all researchers that will investigate suspected fraud.
Ultimately, says Rosenberg, the scientific system must incorporate trust. "You trust co-authors when you write a paper, and peer reviewers at journals trust that scientists at research institutions like Karolinska are acting with integrity."
Without trust, the whole system falls apart. It's the trust of the public, an elusive asset once it has been betrayed, that science depends upon for its very existence. Scientific research is overwhelmingly financed by tax dollars, and the need for the goodwill of the public is more than an abstraction.
The Macchiarini affair raises a profound question of trust and responsibility: Should multiple co-authors be held responsible for a lead author's misconduct?
Karolinska apparently believes so. When the institution at last owned up to the scandal, it vindictively found Karl Henrik-Grinnemo, one of the whistleblowers, guilty of scientific misconduct as well. It also designated two other whistleblowers as "blameworthy" for their roles as co-authors of the papers on which Macchiarini was the lead author.
As a result, the whistleblowers' reputations and employment prospects have become collateral damage. Accusations of research misconduct can be a career killer. Research grants dry up, employment opportunities evaporate, publishing becomes next to impossible, and collaborators vanish into thin air.
Grinnemo contends that co-authors should only be responsible for their discrete contributions, not for the data supplied by others.
"Different aspects of a paper are highly specialized," he says, "and that's why you have multiple authors. You cannot go through every single bit of data because you don't understand all the parts of the article."
This is especially true in multidisciplinary, translational research, where there are sometimes 20 or more authors. "You have to trust co-authors, and if you find something wrong you have to notify all co-authors. But you couldn't go through everything or it would take years to publish an article," says Grinnemo.
Though the pressures facing scientists are very real, the problem of misconduct is not inevitable. Along with increased support from governments and industry, a change in academic culture that emphasizes quality over quantity of published studies could help encourage meritorious research.
But beyond that, trust will always play a role when numerous specialists unite to achieve a common goal: the accumulation of knowledge that will promote human health, wealth, and well-being.
[Correction: An earlier version of this story mistakenly credited The New York Times with breaking the news of the Anversa retractions, rather than Retraction Watch and STAT, which jointly published the exclusive on October 14th. The piece in the Times ran on October 15th. We regret the error.]
The Mind-Blowing Promise of Neural Implants
You may not have heard of DARPA, the research branch of the Pentagon. But you're definitely familiar with some of the technology it has pioneered, like the Internet, Siri, and handheld GPS.
"Now we're going to try to go from this proof-of-concept all the way to commercial technologies that can powerfully affect patients' lives."
Last week in National Harbor, Maryland, DARPA celebrated its 60th anniversary by showcasing its latest breakthroughs and emerging research programs, one of which centers around using neurotechnology to enhance the capabilities of the human brain. This technology is initially being developed to help warfighters and veterans, but its success could have enormous implications for civilian patients and, eventually, mainstream consumers.
The field is moving ahead rapidly. Fifteen years ago, a monkey named Aurora used a brain-machine interface to control a cursor on a computer screen. In 2014, DARPA's mind-controlled prosthetic arm for amputees won approval from the Food and Drug Administration.
Since then, DARPA has continued to push neurotechnology to new heights. Here are three of their research programs that are showing promise in early human testing:
1) A NEURAL IMPLANT HELP MANAGE PSYCHIATRIC ILLNESS
More than 2.2 million veterans and 44 million civilians are living with some form of psychiatric illness, and medications don't work for everyone. DARPA set out to create new options for people living with debilitating anxiety, depression, and PTSD.
"We can get somebody back to normal. It's a whole new set of tools for physicians," said Justin Sanchez, Director of the Biological Technologies Office at DARPA.
He told the audience about a woman living with both epilepsy and extreme anxiety, who has a direct neural interface that reads her brain's signals in real time and can be modulated with stimulation. He shared a recent video of her testing the device:
"Now we're going to try to go from this proof-of-concept all the way to commercial technologies that can powerfully affect patients' lives," Sanchez said.
2) A NEURAL IMPLANT TO HELP IMPROVE MEMORY
"We are right at the cusp" of improving memory recall with direct neural interfaces, Sanchez said.
All day long, our brains shift between poor and good memory states. A brain-computer interface can read the signals of populations of neurons in the lateral temporal cortex. The device continuously monitors the state of the brain and delivers stimulation within a fraction of a second after detecting a poor memory state, to improve the person's memory performance.
The improved memory lasts only seconds, so the system "delivers stimulation as needed in a closed loop to keep the performance in a good state, because of this natural variability of performance," said Dan Rizzuto, founder of NiaTherapeutics, whose technology was developed with support from DARPA and the United States BRAIN Initiative.
Check out this recently shot video of a patient testing the device, which Sanchez called "a breakthrough moment":
About 400 patients have been tested with this technology so far. In a pilot study whose data have not yet been published, patients with traumatic brain injury showed improvement in recall of around 28 percent, according to Rizzuto.
He estimates that potential FDA approval of the device for patients with traumatic brain injury is still 7 to 8 years away. The technology holds the potential to help many other kinds of patients as well.
"We believe this device could also be used to treat Alzheimer's because it's not specific to any brain pathology but based on a deep understanding of the way human memory works," Rizzuto said.
3) A NEURAL IMPLANT TO REVOLUTIONIZE PROSTHETICS FOR WARFIGHTERS AND VETERANS
Since 2006, DARPA has run a program to revolutionize prosthetics. The latest advances allow amputees to actually feel again with their bionic limbs.
Sensors in a prosthetic hand relay information to an interface in the brain that allows the person to detect which of their "fingers" are being touched, while their eyes are closed:
WHAT COMES NEXT?
DARPA is now turning its attention to non-surgical, non-invasive neurotechnology. Researchers hope to use advanced sensor technology to detect signals from neurons without putting any electrodes directly inside the brain. Under the direction of program manager Dr. Al Emondi, the N³ program is about to launch soon and plans to run for four or five years.
"We haven't even scratched the surface of what a human brain's capability is," said Dr. Geoffrey Ling, the Founding Director of the Biological Technologies Office. "When we can make this a non-invasive consumer technology, this will explode. It will take on a life of its own."
Then, inevitably, the hard questions will follow.
As Sanchez put it: "Will society consider some form of neural enhancement a personal choice like braces? Could there be a disturbing gap for people who have neurotech and those who don't? We must come together and all think over the horizon. How the story unfolds ultimately depends on all of us."
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Prostate Cancer Treatments Are Racing Ahead. Here’s a Big Reason Why.
In his lab at UCLA, Dr. Charles Sawyer discovered two drugs for metastatic prostate cancer that are now in routine use all over the world.
At the University of Washington at Seattle, Dr. Heather Cheng was part of a team that discovered the connection between BRCA2 mutations and advanced prostate cancer, and she recently opened a prostate cancer genetics clinic – a new frontier in the field.
At UT Southwestern Medical Center in Dallas, Dr. Nima Sharifi's pioneering research showed why certain drugs don't work in castrate-resistant prostate cancer, and now new therapies are being developed instead.
"We have good reason to believe that investing in young scientists is the way to go."
What Do These Researchers Share in Common?
They were all under 40 when they received a special grant for early-career scientists from the Prostate Cancer Foundation, the leading philanthropic organization that funds prostate cancer research. Experts say that the foundation's dedicated support for young innovators has been a game changer in contributing to the discovery of newer and better therapies for prostate cancer patients.
Howard Soule, the foundation's Executive Vice President and Chief Science Officer, was aware that many of the people who leave behind major legacies in science typically make their discoveries before age 40, like Albert Einstein, who was in his thirties when he published his paper on general relativity.
So back in 2007, the PCF decided to ramp up its support for young researchers.
"We have good reason to believe that investing in young scientists is the way to go, so we've created a program at PCF that is I believe is unique in the field," says Soule.
The Young Investigator Awards Program rigorously screens a pool of roughly 150 applicants for 20 to 25 awards that consist of funding for three years – and that's just the start.
"It's much more than sending them money," says Soule. "We celebrate them at annual meetings, we have a networking center with no equal in the field, and throughout the years of their three-year-award and basically forever, we create community. We are a safe place for them to land, they share data with us that's unpublished, and we provide a lot of feedback and stewardship to their donors."
Spotlighting Recipients: From the Study of Tumors to Twitter
Heather Cheng was in her thirties when she received her award three years ago. "It's been very, very helpful in allowing me to do the type of work I am really excited about doing," she says.
At the time, she had recently joined the faculty at the University of Washington after completing an MD/PhD medical scientist training program, internal medicine residency and hematology/oncology fellowship, and she was considering what new direction to take in her research. Several patients captured her imagination who were diagnosed at a very young age with metastatic prostate cancer, and "even though we had cool new drugs to extend life, these particular patients' cancers blew through everything."
"This is a new intersection because genetics has not been discussed in the context of care for men with prostate cancer that much."
She decided to make a niche out of understanding the connection between often early-onset aggressive prostate cancer and familial genetic risk, in order to improve treatment options for these patients. In 2016, Cheng launched a new clinic and invited any men to visit who have a family history of cancer and who are interested in genetic testing, or who have a known mutation and want to learn about treatment opportunities, or who want to know if their cancer tumor can be inherited.
"It's an open door to have a discussion because the technology and treatment potentials are so new," Cheng says. "There's a lot to learn."
It used to be that a doctor would ask a male patient about his family history, and if a mother had breast cancer at a young age, for example, and several other family members met the criteria for a genetic risk, then perhaps the patient had inherited a mutation in a cancer risk gene. But what to do next was unclear.
Now, doctors are taking men with a diagnosis of prostate cancer, sequencing their inherited DNA or their tumors, and finding out if they have mutations that could guide their treatment plan. For example, medications called PARP inhibitors have shown encouraging early results for men with a BRCA2 gene mutation and are now in clinical trials for treating prostate cancer.
"This is a new intersection because genetics has not been discussed in the context of care for men with prostate cancer that much," Cheng says. "This has changed practice because changes to national cancer guidelines have happened in less than five years. The change has happened so quickly that the field is not completely prepared for implementation and clinical logistics."
Another young investigator, New York University urologist and prostate cancer researcher Stacy Loeb, received her award at age 36 two years ago. She realized that no one had scientifically studied how patients are using crowdsourcing platforms like GoFundMe and YouCaring to raise money for their treatments. In her research, she found that there are many more campaigns for breast cancer and that they are more successful in crowdfunding than the prostate cancer campaigns.
"We have identified some gaps in advocacy and awareness for prostate cancer – fewer people know about it or discuss it, but it is a leading cause of death of U.S. men, so it is important to get more people aware," Loeb notes.
In fact, today the PCF releases data from a survey of more than 2,000 U.S. adults that reveals widespread ignorance about the disease. Two-thirds of respondents, for example, did not know that men with early stage prostate cancer experience no symptoms, and many were unaware that screening begins with a simple blood test.
Besides studying patient behavior, Loeb also wanted to better understand how physicians and scientists are using social media, and how their participation on platforms like Twitter could be fostered to promote greater dissemination of knowledge. So she helped start a monthly prostate cancer journal club on Twitter, hosted through the PCF science account. The club features an important new research paper in the field each month, and she invites the authors of the paper to participate in a 48-hour online discussion.
"The Journal Club is a monthly thing at most institutions," she says, "but typically it's one institution with people from one department. What's better about this is we have people who are doctors, nurses, scientists, patients, stakeholders participating from all over the world."
Why Do Young Innovators Have an Edge?
The environment matters, for one.
"We all bring different life experiences to the table, we grew up in different eras, so we have different norms and tools at our disposal that weren't available," says Loeb, who was one of the early adopters of social media in the urology space. She now gives a lecture at the annual PCF retreat on how to use social media to advance one's scientific career.
"The more you're invested into a system, the less you may be able to recognize its limitations."
But the advantage of youth is not just greater familiarity with the newest tools. It's also the existential benefit of not being entrenched in the way it's always been.
"Often there is a healthy skepticism of what's come before," explains Dr. Joseph La Brie, a clinical psychologist and professor at psychology at Loyola Marymount University. "That's connected to not being wedded to a programmatic view of the problem. There's a freshness and creative outlook because they are looking at it with a new set of eyes, and there's a desire to make their mark on the field, to be unique and innovative and not just follow in somebody else's footsteps."
And as Cheng puts it, "The more you're invested into a system, the less you may be able to recognize its limitations."
But it's notoriously difficult for scientists to get funding for innovative ideas without having already published preliminary data, which is what the National Institutes of Health and other funding bodies like to see. Eliminating that hurdle is a big part of why PCF's approach has been so effective, according to a veteran of the field, Johns Hopkins urologist Dr. Kenneth Pienta; his own groundbreaking research has been supported by PCF since he was a young scientist in the '90s.
"Any granting mechanism that allows people to fund ideas without a lot of preliminary data is a good thing," he declares.
Support for creative young minds is crucial across all endeavors, beyond any single disease or discipline. At a recent conference showcasing emerging technology for DARPA, the research arm of the Defense Department, expert panelists in artificial intelligence were asked: What is the single most important thing to focus on over the next decade?
Robotics pioneer Dr. Rodney Brooks may have put it best: "Figure out how to fund some really radical young mavericks and see what happens."
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.