Science Fact vs. Science Fiction: Can You Tell the Difference?
Today's growing distrust of science is not an academic problem. It can be a matter of life and death.
Take, for example, the tragic incident in 2016 when at least 10 U.S. children died and over 400 were sickened after they tried homeopathic teething medicine laced with a poisonous herb called "deadly nightshade." Carried by CVS, Walgreens, and other major American pharmacies, the pills contained this poison based on the alternative medicine principle of homeopathy, the treatment of medical conditions by tiny doses of natural substances that produce symptoms of disease.
Such "alternative medicines" take advantage of the lack of government regulation and people's increasing hostility toward science.
These children did not have to die. Numerous research studies show that homeopathy does not work. Despite this research, homeopathy is a quickly-growing multi-billion dollar business.
Such "alternative medicines" take advantage of the lack of government regulation and people's increasing hostility toward science. Polling shows that the number of people who believe that science has "made life more difficult" increased by 50 percent from 2009 to 2015. According to a 2017 survey, only 35 percent of respondents have "a lot" of trust in scientists; the number of people who do "not at all" trust scientists increased by over 50 percent from a similar poll conducted in December 2013.
Children dying from deadly nightshade is only one consequence of this crisis of trust. For another example, consider the false claim that vaccines cause autism. This belief has spread widely across the US, and led to a host of problems. For instance, measles was practically eliminated in the US by 2000. However, in recent years outbreaks of measles have been on the rise, driven by parents failing to vaccinate their children in a number of communities.
The Internet Is for… Misinformation
The rise of the Internet, and more recently social media, is key to explaining the declining public confidence in science.
Before the Internet, the information accessible to the general public about any given topic usually came from experts. For instance, researchers on autism were invited to talk on mainstream media, they wrote encyclopedia articles, and they authored books distributed by large publishers.
The Internet has enabled anyone to be a publisher of content, connecting people around the world with any and all sources of information. On the one hand, this freedom is empowering and liberating, with Wikipedia a great example of a highly-curated and accurate source on the vast majority of subjects. On the other, anyone can publish a blog piece making false claims about links between vaccines and autism or the effectiveness of homeopathic medicine. If they are skilled at search engine optimization, or have money to invest in advertising, they can get their message spread widely. Russia has done so extensively to influence elections outside of its borders, whether in the E.U. or the U.S.
Unfortunately, research shows that people lack the skills for differentiating misinformation from true information. This lack of skills has clear real-world effects: U.S. adults believed 75 percent of fake news stories about the 2016 US Presidential election. The more often someone sees a piece of misinformation, the more likely they are to believe it.
To make matters worse, we all suffer from a series of thinking errors such as the confirmation bias, our tendency to look for and interpret information in ways that conform to our intuitions.
Blogs with falsehoods are bad enough, but the rise of social media has made the situation even worse. Most people re-share news stories without reading the actual article, judging the quality of the story by the headline and image alone. No wonder research has indicated that misinformation spreads as much as 10 times faster and further on social media than true information. After all, creators of fake news are free to devise the most appealing headline and image, while credible sources of information have to stick to factual headlines and images.
To make matters worse, we all suffer from a series of thinking errors such as the confirmation bias, our tendency to look for and interpret information in ways that conform to our intuitions and preferences, as opposed to the facts. Our inherent thinking errors combined with the Internet's turbine power has exploded the prevalence of misinformation.
So it's no wonder we see troubling gaps between what scientists and the public believe about issues like climate change, evolution, genetically modified organisms, and vaccination.
What Can We Do?
Fortunately, there are proactive steps we can take to address the crisis of trust in science and academia. The Pro-Truth Pledge, founded by a group of behavioral science experts (including myself) and concerned citizens, calls on public figures, organizations, and private citizens to commit to 12 behaviors listed on the pledge website that research in behavioral science shows correlate with truthfulness.
Signers are held accountable through a crowdsourced reporting and evaluation mechanism while getting reputational rewards because of their commitment. The scientific consensus serves as a key measure of credibility, and the pledge encourages pledge-takers to recognize the opinions of experts - especially scientists - as more likely to be true when the facts are disputed.
The pledge "really does seem to change one's habits," encouraging signers to have attitudes "of honesty and moral sincerity."
Launched in December 2016, the pledge has surprising traction. Over 6200 private citizens took the pledge. So did more than 500 politicians, including members of US state legislatures Eric Nelson (PA), James White (TX), and Ogden Driskell (WY), and national politicians such as members of U.S. Congress Beto O'Rourke (TX), Matt Cartwright (PA), and Marcia Fudge (OH). Over 700 other public figures, such as globally-known public intellectuals Peter Singer, Steven Pinker, Michael Shermer, and Jonathan Haidt, took the pledge, as well as 70 organizations such as Media Bias/Fact Check, Fugitive Watch, Earth Organization for Sustainability, and One America Movement.
The pledge is effective in changing behaviors. A candidate for Congress, Michael Smith, took the Pro-Truth Pledge. He later posted on his Facebook wall a screenshot of a tweet by Donald Trump criticizing minority and disabled children. However, after being called out that the tweet was a fake, he went and searched Trump's feed. He could not find the original tweet, and while Trump may have deleted it, the candidate edited his own Facebook post to say, "Due to a Truth Pledge I have taken, I have to say I have not been able to verify this post." He indicated that he would be more careful with future postings.
U.S. Army veteran and pledge-taker John Kirbow described how the pledge "really does seem to change one's habits," helping push him both to correct his own mistakes with an "attitude of humility and skepticism, and of honesty and moral sincerity," and also to encourage "friends and peers to do so as well."
His experience is confirmed by research on the pledge. Two research studies at Ohio State University demonstrated the effectiveness of the pledge in changing the behavior of pledge-takers to be more truthful with a strong statistical significance.
Taking the pledge yourself, and encouraging people you know and your elected representatives to do the same, is an easy and effective way to fight misinformation and to promote a culture that values the truth.
Have You Heard of the Best Sport for Brain Health?
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the promising studies covered in this week's Friday Five:
- Reprogram cells to a younger state
- Pick up this sport for brain health
- Do all mental illnesses have the same underlying cause?
- New test could diagnose autism in newborns
- Scientists 3D print an ear and attach it to woman
Can blockchain help solve the Henrietta Lacks problem?
Science has come a long way since Henrietta Lacks, a Black woman from Baltimore, succumbed to cervical cancer at age 31 in 1951 -- only eight months after her diagnosis. Since then, research involving her cancer cells has advanced scientific understanding of the human papilloma virus, polio vaccines, medications for HIV/AIDS and in vitro fertilization.
Today, the World Health Organization reports that those cells are essential in mounting a COVID-19 response. But they were commercialized without the awareness or permission of Lacks or her family, who have filed a lawsuit against a biotech company for profiting from these “HeLa” cells.
While obtaining an individual's informed consent has become standard procedure before the use of tissues in medical research, many patients still don’t know what happens to their samples. Now, a new phone-based app is aiming to change that.
Tissue donors can track what scientists do with their samples while safeguarding privacy, through a pilot program initiated in October by researchers at the Johns Hopkins Berman Institute of Bioethics and the University of Pittsburgh’s Institute for Precision Medicine. The program uses blockchain technology to offer patients this opportunity through the University of Pittsburgh's Breast Disease Research Repository, while assuring that their identities remain anonymous to investigators.
A blockchain is a digital, tamper-proof ledger of transactions duplicated and distributed across a computer system network. Whenever a transaction occurs with a patient’s sample, multiple stakeholders can track it while the owner’s identity remains encrypted. Special certificates called “nonfungible tokens,” or NFTs, represent patients’ unique samples on a trusted and widely used blockchain that reinforces transparency.
Blockchain could be used to notify people if cancer researchers discover that they have certain risk factors.
“Healthcare is very data rich, but control of that data often does not lie with the patient,” said Julius Bogdan, vice president of analytics for North America at the Healthcare Information and Management Systems Society (HIMSS), a Chicago-based global technology nonprofit. “NFTs allow for the encapsulation of a patient’s data in a digital asset controlled by the patient.” He added that this technology enables a more secure and informed method of participating in clinical and research trials.
Without this technology, de-identification of patients’ samples during biomedical research had the unintended consequence of preventing them from discovering what researchers find -- even if that data could benefit their health. A solution was urgently needed, said Marielle Gross, assistant professor of obstetrics, gynecology and reproductive science and bioethics at the University of Pittsburgh School of Medicine.
“A researcher can learn something from your bio samples or medical records that could be life-saving information for you, and they have no way to let you or your doctor know,” said Gross, who is also an affiliate assistant professor at the Berman Institute. “There’s no good reason for that to stay the way that it is.”
For instance, blockchain could be used to notify people if cancer researchers discover that they have certain risk factors. Gross estimated that less than half of breast cancer patients are tested for mutations in BRCA1 and BRCA2 — tumor suppressor genes that are important in combating cancer. With normal function, these genes help prevent breast, ovarian and other cells from proliferating in an uncontrolled manner. If researchers find mutations, it’s relevant for a patient’s and family’s follow-up care — and that’s a prime example of how this newly designed app could play a life-saving role, she said.
Liz Burton was one of the first patients at the University of Pittsburgh to opt for the app -- called de-bi, which is short for decentralized biobank -- before undergoing a mastectomy for early-stage breast cancer in November, after it was diagnosed on a routine mammogram. She often takes part in medical research and looks forward to tracking her tissues.
“Anytime there’s a scientific experiment or study, I’m quick to participate -- to advance my own wellness as well as knowledge in general,” said Burton, 49, a life insurance service representative who lives in Carnegie, Pa. “It’s my way of contributing.”
Liz Burton was one of the first patients at the University of Pittsburgh to opt for the app before undergoing a mastectomy for early-stage breast cancer.
Liz Burton
The pilot program raises the issue of what investigators may owe study participants, especially since certain populations, such as Black and indigenous peoples, historically were not treated in an ethical manner for scientific purposes. “It’s a truly laudable effort,” Tamar Schiff, a postdoctoral fellow in medical ethics at New York University’s Grossman School of Medicine, said of the endeavor. “Research participants are beautifully altruistic.”
Lauren Sankary, a bioethicist and associate director of the neuroethics program at Cleveland Clinic, agrees that the pilot program provides increased transparency for study participants regarding how scientists use their tissues while acknowledging individuals’ contributions to research.
However, she added, “it may require researchers to develop a process for ongoing communication to be responsive to additional input from research participants.”
Peter H. Schwartz, professor of medicine and director of Indiana University’s Center for Bioethics in Indianapolis, said the program is promising, but he wonders what will happen if a patient has concerns about a particular research project involving their tissues.
“I can imagine a situation where a patient objects to their sample being used for some disease they’ve never heard about, or which carries some kind of stigma like a mental illness,” Schwartz said, noting that researchers would have to evaluate how to react. “There’s no simple answer to those questions, but the technology has to be assessed with an eye to the problems it could raise.”
To truly make a difference, blockchain must enable broad consent from patients, not just de-identification.
As a result, researchers may need to factor in how much information to share with patients and how to explain it, Schiff said. There are also concerns that in tracking their samples, patients could tell others what they learned before researchers are ready to publicly release this information. However, Bogdan, the vice president of the HIMSS nonprofit, believes only a minimal study identifier would be stored in an NFT, not patient data, research results or any type of proprietary trial information.
Some patients may be confused by blockchain and reluctant to embrace it. “The complexity of NFTs may prevent the average citizen from capitalizing on their potential or vendors willing to participate in the blockchain network,” Bogdan said. “Blockchain technology is also quite costly in terms of computational power and energy consumption, contributing to greenhouse gas emissions and climate change.”
In addition, this nascent, groundbreaking technology is immature and vulnerable to data security flaws, disputes over intellectual property rights and privacy issues, though it does offer baseline protections to maintain confidentiality. To truly make a difference, blockchain must enable broad consent from patients, not just de-identification, said Robyn Shapiro, a bioethicist and founding attorney at Health Sciences Law Group near Milwaukee.
The Henrietta Lacks story is a prime example, Shapiro noted. During her treatment for cervical cancer at Johns Hopkins, Lacks’s tissue was de-identified (albeit not entirely, because her cell line, HeLa, bore her initials). After her death, those cells were replicated and distributed for important and lucrative research and product development purposes without her knowledge or consent.
Nonetheless, Shapiro thinks that the initiative by the University of Pittsburgh and Johns Hopkins has potential to solve some ethical challenges involved in research use of biospecimens. “Compared to the system that allowed Lacks’s cells to be used without her permission, Shapiro said, “blockchain technology using nonfungible tokens that allow patients to follow their samples may enhance transparency, accountability and respect for persons who contribute their tissue and clinical data for research.”
Read more about laws that have prevented people from the rights to their own cells.