Scientists Attempt to Make Human Cells Resistant to Coronaviruses and Ebola
Lina Zeldovich has written about science, medicine and technology for Popular Science, Smithsonian, National Geographic, Scientific American, Reader’s Digest, the New York Times and other major national and international publications. A Columbia J-School alumna, she has won several awards for her stories, including the ASJA Crisis Coverage Award for Covid reporting, and has been a contributing editor at Nautilus Magazine. In 2021, Zeldovich released her first book, The Other Dark Matter, published by the University of Chicago Press, about the science and business of turning waste into wealth and health. You can find her on http://linazeldovich.com/ and @linazeldovich.
Under the electronic microscope, the Ebola particles looked like tiny round bubbles floating inside human cells. Except these Ebola particles couldn't get free from their confinement.
They were trapped inside their bubbles, unable to release their RNA into the human cells to start replicating. These cells stopped the Ebola infection. And they did it on their own, without any medications, albeit in a petri dish of immunologist Adam Lacy-Hulbert. He studies how cells fight infections at the Benaroya Research Institute in Seattle, Washington.
These weren't just any ordinary human cells. They had a specific gene turned on—namely CD74, which typically wouldn't be on. Lacy-Hulbert's team was experimenting with turning various genes on and off to see what made cells fight viral infections better. One particular form of the CD74 gene did the trick. Normally, the Ebola particles would use the cells' own proteases—enzymes that are often called "molecular scissors" because they slice proteins—to cut the bubbles open. But CD74 produced a protein that blocked the scissors from cutting the bubbles, leaving Ebola trapped.
"When that gene turns on, it makes the protein that interferes with Ebola replication," Lacy-Hulbert says. "The protein binds to those molecular scissors and stops them from working." Even better, the protein interfered with coronaviruses too, including SARS-CoV-2, as the team published in the journal Science.
This begs the question: If one can turn on cells' viral resistance in a lab, can this be done in a human body so we that we can better fight Ebola, coronaviruses and other viral scourges?
Recent research indeed shows that our ability to fight viral infections is written in our genes. Genetic variability is at least one reason why some coronavirus-infected people don't develop symptoms while others stay on ventilators for weeks—often due to the aberrant response of their immune system, which went on overdrive to kill the pathogen. But if cells activate certain genes early in the infection, they might successfully stop viruses from replicating before the immune system spirals out of control.
"If my father who is 70 years old tests positive, I would recommend he takes interferon as early as possible."
When we talk about fighting infections, we tend to think in terms of highly specialized immune system cells—B-cells that release antibodies and T-cells that stimulate inflammatory responses, says Lacy-Hulbert. But all other cells in the body have the ability to fight infections too via different means. When cells detect the presence of a pathogen, they release interferons—small protein molecules named so because they set off a genetic chain reaction that interferes with viral replication. These molecules work as alarm signals to other cells around them. The neighboring cells transduce these signals inside themselves and turn on genes responsible for cellular defenses.
"There are at least 300 to 400 genes that are stimulated by type I interferons," says professor Jean-Laurent Casanova at Rockefeller University.
Scientists don't yet know exactly what all of these genes do, but they change the molecular behavior of the cells. "The cells go into a dramatic change and start producing hundreds of proteins that interfere with viral replication on the inside," explains Qian Zhang, a researcher at Casanova's lab. "Some block the proteins the virus needs and some physically tether the virus."
Some cells produce only small amount of interferon, enough to alert their neighbors. Others, such microphages and monocytes, whose jobs are to detect foreign invaders, produce a lot, injecting interferons into the blood to sound the alarm throughout the body. "They are professional cells so their jobs [are] to detect a viral or bacterial infection," Zhang explains.
People with impaired interferon responses are more vulnerable to infections, including influenza and coronaviruses. In two recent studies published in the journal Science, Casanova, Zhang and their colleagues found that patients who lacked a certain type of interferon had more severe Covid-19 symptoms and some died from it. The team ran a genetic comparison of blood samples from patients hospitalized with severe coronavirus cases against those with the asymptomatic infections.
They found that people with severe disease had rare variants in the 13 genes responsible for interferon production. More than three percent of them had a genetic mutation resulting in non-functioning genes. And over ten percent had an autoimmune condition, in which misguided antibodies neutralized their interferons, dampening their bodies' defenses—and these patients were predominantly men. These discoveries help explain why some young and seemingly healthy individuals require life support, while others have mild symptoms or none. The findings also offer ways of stimulating cellular resistance.
A New Frontier in the Making
The idea of making human cells genetically resistant to infections—and possibly other stressors like cancer or aging—has been considered before. It is the concept behind the Genome Project-write or GP-write project, which aims to create "ultra-safe" versions of human cells that resist a variety of pathogens by way of "recoding" or rewriting the cells' genes.
To build proteins, cells use combinations of three DNA bases called codons to represent amino acids—the proteins' building blocks. But biologists find that many of the codons are redundant so if they were removed from all genes, the human cells would still make all their proteins. However, the viruses, whose genes would still include these eliminated redundant codons, would no longer successfully be able to replicate inside human cells.
In 2016, the GP-Write team successfully reduced the number of Escherichia coli's codons from 64 to 57. Recoding genes in all human cells would be harder, but some recoded cells may be transplanted into the body, says Harvard Medical School geneticist George Church, the GP-Write core founding member.
"You can recode a subset of the body, such as all of your blood," he says. "You can also grow an organ inside a recoded pig and transplant it."
Church adds that these methods are still in stages that are too early to help us with this pandemic.
LeapsMag exclusively interviewed Church in 2019 about his latest progress with DNA recoding:
The Push for Clinical Trials
In the meantime, interferons may prove an easier medicine. Lacy-Hulbert thinks that interferon gamma might play a role in activating the CD74 gene, which gums up the molecular scissors. There also may be other ways to activate that gene. "So we are now thinking, can we develop a drug that mimics that actual activity?" he says.
Some interferons are already manufactured and used for treating certain diseases, including multiple sclerosis. Theoretically, nothing prevents doctors from prescribing interferons to Covid patients, but it must be done in the early stages of infection—to stimulate genes that trigger cellular defenses before the virus invades too many cells and before the immune systems mobilizes its big guns.
"If my father who is 70 years old tests positive, I would recommend he takes interferon as early as possible," says Zhang. But to make it a mainstream practice, doctors need clear prescription guidelines. "What would really help doctors make these decisions is clinical trials," says Casanova, so that such guidelines can be established. "We are now starting to push for clinical trials," he adds.
Lina Zeldovich has written about science, medicine and technology for Popular Science, Smithsonian, National Geographic, Scientific American, Reader’s Digest, the New York Times and other major national and international publications. A Columbia J-School alumna, she has won several awards for her stories, including the ASJA Crisis Coverage Award for Covid reporting, and has been a contributing editor at Nautilus Magazine. In 2021, Zeldovich released her first book, The Other Dark Matter, published by the University of Chicago Press, about the science and business of turning waste into wealth and health. You can find her on http://linazeldovich.com/ and @linazeldovich.
A new injection is helping stave off RSV this season
In November 2021, Mickayla Wininger’s then one-month-old son, Malcolm, endured a terrifying bout with RSV, the respiratory syncytial (sin-SISH-uhl) virus—a common ailment that affects all age groups. Most people recover from mild, cold-like symptoms in a week or two, but RSV can be life-threatening in others, particularly infants.
Wininger, who lives in southern Illinois, was dressing Malcolm for bed when she noticed what seemed to be a minor irregularity with this breathing. She and her fiancé, Gavin McCullough, planned to take him to the hospital the next day. The matter became urgent when, in the morning, the boy’s breathing appeared to have stopped.
After they dialed 911, Malcolm started breathing again, but he ended up being hospitalized three times for RSV and defects in his heart. Eventually, he recovered fully from RSV, but “it was our worst nightmare coming to life,” Wininger recalled.
It’s a scenario that the federal government is taking steps to prevent. In July, the Food and Drug Administration approved a single-dose, long-acting injection to protect babies and toddlers. The injection, called Beyfortus, or nirsevimab, became available this October. It reduces the incidence of RSV in pre-term babies and other infants for their first RSV season. Children at highest risk for severe RSV are those who were born prematurely and have either chronic lung disease of prematurity or congenital heart disease. In those cases, RSV can progress to lower respiratory tract diseases such as pneumonia and bronchiolitis, or swelling of the lung’s small airway passages.
Each year, RSV is responsible for 2.1 million outpatient visits among children younger than five-years-old, 58,000 to 80,000 hospitalizations in this age group, and between 100 and 300 deaths, according to the Centers for Disease Control and Prevention. Transmitted through close contact with an infected person, the virus circulates on a seasonal basis in most regions of the country, typically emerging in the fall and peaking in the winter.
In August, however, the CDC issued a health advisory on a late-summer surge in severe cases of RSV among young children in Florida and Georgia. The agency predicts "increased RSV activity spreading north and west over the following two to three months.”
Infants are generally more susceptible to RSV than older people because their airways are very small, and their mechanisms to clear these passages are underdeveloped. RSV also causes mucus production and inflammation, which is more of a problem when the airway is smaller, said Jennifer Duchon, an associate professor of newborn medicine and pediatrics in the Icahn School of Medicine at Mount Sinai in New York.
In 2021 and 2022, RSV cases spiked, sending many to emergency departments. “RSV can cause serious disease in infants and some children and results in a large number of emergency department and physician office visits each year,” John Farley, director of the Office of Infectious Diseases in the FDA’s Center for Drug Evaluation and Research, said in a news release announcing the approval of the RSV drug. The decision “addresses the great need for products to help reduce the impact of RSV disease on children, families and the health care system.”
Sean O’Leary, chair of the committee on infectious diseases for the American Academy of Pediatrics, says that “we’ve never had a product like this for routine use in children, so this is very exciting news.” It is recommended for all kids under eight months old for their first RSV season. “I would encourage nirsevimab for all eligible children when it becomes available,” O’Leary said.
For those children at elevated risk of severe RSV and between the ages of 8 and 19 months, the CDC recommends one dose in their second RSV season.
The drug will be “really helpful to keep babies healthy and out of the hospital,” said O’Leary, a professor of pediatrics at the University of Colorado Anschutz Medical Campus/Children’s Hospital Colorado in Denver.
An antiviral drug called Synagis (palivizumab) has been an option to prevent serious RSV illness in high-risk infants since it was approved by the FDA in 1998. The injection must be given monthly during RSV season. However, its use is limited to “certain children considered at high risk for complications, does not help cure or treat children already suffering from serious RSV disease, and cannot prevent RSV infection,” according to the National Foundation for Infectious Diseases.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants.
Both nirsevimab and palivizumab are monoclonal antibodies that act against RSV. Monoclonal antibodies are lab-made proteins that mimic the immune system’s ability to fight off harmful pathogens such as viruses. A single intramuscular injection of nirsevimab preceding or during RSV season may provide protection.
The strategy with the new monoclonal antibody is “to extend protection to healthy infants who nonetheless are at risk because of their age, as well as infants with additional medical risk factors,” said Philippa Gordon, a pediatrician and infectious disease specialist in Brooklyn, New York, and medical adviser to Park Slope Parents, an online community support group.
No specific preventive measure is needed for older and healthier kids because they will develop active immunity, which is more durable. Meanwhile, older adults, who are also vulnerable to RSV, can receive one of two new vaccines. So can pregnant women, who pass on immunity to the fetus, Gordon said.
Until the approval this summer of the new monoclonal antibody, nirsevimab, there wasn’t a reliable method to prevent infection in most healthy infants, “nor is there any treatment other than giving oxygen or supportive care,” said Stanley Spinner, chief medical officer and vice president of Texas Children’s Pediatrics and Texas Children’s Urgent Care.
As with any virus, washing hands frequently and keeping infants and children away from sick people are the best defenses, Duchon said. This approach isn’t foolproof because viruses can run rampant in daycare centers, schools and parents’ workplaces, she added.
Mickayla Wininger, Malcolm’s mother, insists that family and friends wear masks, wash their hands and use hand sanitizer when they’re around her daughter and two sons. She doesn’t allow them to kiss or touch the children. Some people take it personally, but she would rather be safe than sorry.
Wininger recalls the severe anxiety caused by Malcolm's ordeal with RSV. After returning with her infant from his hospital stays, she was terrified to go to sleep. “My fiancé and I would trade shifts, so that someone was watching over our son 24 hours a day,” she said. “I was doing a night shift, so I would take caffeine pills to try and keep myself awake and would end up crashing early hours in the morning and wake up frantically thinking something happened to my son.”
Two years later, her anxiety has become more manageable, and Malcolm is doing well. “He is thriving now,” Wininger said. He recently had his second birthday and "is just the spunkiest boy you will ever meet. He looked death straight in the eyes and fought to be here today.”
Story by Big Think
For most of history, artificial intelligence (AI) has been relegated almost entirely to the realm of science fiction. Then, in late 2022, it burst into reality — seemingly out of nowhere — with the popular launch of ChatGPT, the generative AI chatbot that solves tricky problems, designs rockets, has deep conversations with users, and even aces the Bar exam.
But the truth is that before ChatGPT nabbed the public’s attention, AI was already here, and it was doing more important things than writing essays for lazy college students. Case in point: It was key to saving the lives of tens of millions of people.
AI-designed mRNA vaccines
As Dave Johnson, chief data and AI officer at Moderna, told MIT Technology Review‘s In Machines We Trust podcast in 2022, AI was integral to creating the company’s highly effective mRNA vaccine against COVID. Moderna and Pfizer/BioNTech’s mRNA vaccines collectively saved between 15 and 20 million lives, according to one estimate from 2022.
Johnson described how AI was hard at work at Moderna, well before COVID arose to infect billions. The pharmaceutical company focuses on finding mRNA therapies to fight off infectious disease, treat cancer, or thwart genetic illness, among other medical applications. Messenger RNA molecules are essentially molecular instructions for cells that tell them how to create specific proteins, which do everything from fighting infection, to catalyzing reactions, to relaying cellular messages.
Johnson and his team put AI and automated robots to work making lots of different mRNAs for scientists to experiment with. Moderna quickly went from making about 30 per month to more than one thousand. They then created AI algorithms to optimize mRNA to maximize protein production in the body — more bang for the biological buck.
For Johnson and his team’s next trick, they used AI to automate science, itself. Once Moderna’s scientists have an mRNA to experiment with, they do pre-clinical tests in the lab. They then pore over reams of data to see which mRNAs could progress to the next stage: animal trials. This process is long, repetitive, and soul-sucking — ill-suited to a creative scientist but great for a mindless AI algorithm. With scientists’ input, models were made to automate this tedious process.
“We don’t think about AI in the context of replacing humans,” says Dave Johnson, chief data and AI officer at Moderna. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
All these AI systems were in put in place over the past decade. Then COVID showed up. So when the genome sequence of the coronavirus was made public in January 2020, Moderna was off to the races pumping out and testing mRNAs that would tell cells how to manufacture the coronavirus’s spike protein so that the body’s immune system would recognize and destroy it. Within 42 days, the company had an mRNA vaccine ready to be tested in humans. It eventually went into hundreds of millions of arms.
Biotech harnesses the power of AI
Moderna is now turning its attention to other ailments that could be solved with mRNA, and the company is continuing to lean on AI. Scientists are still coming to Johnson with automation requests, which he happily obliges.
“We don’t think about AI in the context of replacing humans,” he told the Me, Myself, and AI podcast. “We always think about it in terms of this human-machine collaboration, because they’re good at different things. Humans are really good at creativity and flexibility and insight, whereas machines are really good at precision and giving the exact same result every single time and doing it at scale and speed.”
Moderna, which was founded as a “digital biotech,” is undoubtedly the poster child of AI use in mRNA vaccines. Moderna recently signed a deal with IBM to use the company’s quantum computers as well as its proprietary generative AI, MoLFormer.
Moderna’s success is encouraging other companies to follow its example. In January, BioNTech, which partnered with Pfizer to make the other highly effective mRNA vaccine against COVID, acquired the company InstaDeep for $440 million to implement its machine learning AI across its mRNA medicine platform. And in May, Chinese technology giant Baidu announced an AI tool that designs super-optimized mRNA sequences in minutes. A nearly countless number of mRNA molecules can code for the same protein, but some are more stable and result in the production of more proteins. Baidu’s AI, called “LinearDesign,” finds these mRNAs. The company licensed the tool to French pharmaceutical company Sanofi.
Writing in the journal Accounts of Chemical Research in late 2021, Sebastian M. Castillo-Hair and Georg Seelig, computer engineers who focus on synthetic biology at the University of Washington, forecast that AI machine learning models will further accelerate the biotechnology research process, putting mRNA medicine into overdrive to the benefit of all.
This article originally appeared on Big Think, home of the brightest minds and biggest ideas of all time.