Short-Term Suspended Animation for Humans Is Coming Soon
At 1 a.m., Tony B. is flown to a shock trauma center of a university hospital. Five minutes earlier, he was picked up unconscious with no blood pressure, having suffered multiple gunshot wounds with severe blood loss. Standard measures alone would not have saved his life, but on the helicopter he was injected with ice-cold fluids intravenously to begin cooling him from the inside, and given special drugs to protect his heart and brain.
Suspended animation is not routine yet, but it's going through clinical trials at the University of Maryland and the University of Pittsburgh.
A surgeon accesses Tony's aorta, allowing his body to be flushed with larger amounts of cold fluids, thereby inducing profound hypothermia -- a body temperature below 10° C (50° F). This is suspended animation, a form of human hibernation, but officially the procedure is called Emergency Preservation and Resuscitation for Cardiac Arrest from Trauma (EPR-CAT).
This chilly state, which constitutes the preservation component of Tony's care, continues for an hour as surgeons repair injuries and connect his circulation to cardiopulmonary bypass (CPB). This allows blood to move through the brain delivering oxygen at low doses appropriate for the sharply reduced metabolic rate that comes with the hypothermia, without depending on the heart and lungs. CPB also enables controlled, gradual re-warming of Tony's body as fluid and appropriate amounts of red blood cells are transfused into him.
After another hour or so, Tony's body temperature reaches the range of 32-34° C (~90-93° F), called mild hypothermia. Having begun the fluid resuscitation process already, the team stops warming Tony, switches his circulation from CPB to his own heart and lungs, and begins cardiac resuscitation with electrical jolts to his heart. With his blood pressure stable, his heart rate slow but appropriate for the mild hypothermia, Tony is maintained at this intermediate temperature for 24 hours; this last step is already standard practice in treatment of people who suffer cardiac arrest without blood loss trauma.
The purpose is to prevent brain damage that might come with the rapid influx of too much oxygen, just as a feast would mean death to a starvation victim. After he is warmed to a normal temperature of 37° C (~99° F), Tony is awakened and ultimately recovers with no brain damage.
Tony's case is fictional; EPR-CAT is not routine yet, but it's going through clinical trials at the University of Maryland and the University of Pittsburgh, under the direction of trauma surgeon Dr. Samuel Tisherman, who spent many years developing the procedure in dogs and pigs. In such cases, patients undergo suspended animation for a couple of hours at most, but other treatments are showing promise in laboratory animals, like the use of hydrogen sulfide gas without active cooling to induce suspended animation in mice. Such interventions could ultimately fuse with EPR-CAT, sending the new technology further into what's still the realm of science fiction – at least for now.
Consider the scenario of a 5-year-old girl diagnosed with a progressive, incurable, terminal disease.
Experts say that extended suspended animation – cooling patients in a stable state for months or years -- could be possible at some point, although no one can predict when the technology will be clinical reality, since hydrogen sulfide and other chemical tactics would have to move into clinical use in humans and prove safe and effective in combination with EPR-CAT, or with a similar cooling approach.
How Could Long-Term Suspended Animation Impact Humanity?
Consider the scenario of a 5-year-old girl diagnosed with a progressive, incurable, terminal disease. Since available treatments would only lengthen the projected survival by a year, she is placed into suspended animation. She is revived partially every few years, as new treatments become available that can have a major impact on her disease. After 35 years of this, she is revived completely as treatments are finally adequate to cure her condition, but biologically she has aged only a few months. Physically, she is normal now, though her parents are in their seventies, and her siblings are grown and married.
Such hypothetical scenarios raise many issues: Where will the resources come from to take care of patients for that long? Who will pay? And how will patients adapt when they emerge into a completely different world?
"Heavy resource utilization is a factor if you've got people hibernating for years or decades," says Bradford Winters, an associate professor of anesthesiology and critical care medicine, and assistant professor of neurological surgery at Johns Hopkins.
Conceivably, special high-tech facilities with robots and artificial intelligence watching over the hibernators might solve the resource issue, but even then, Winters notes that long-term hibernation would entail major disparities between the wealthy and poor. "And then there is the psychological effect of being disconnected from one's family and society for a generation or more," he says. "What happens to that 5-year-old waking to her retired parents and married siblings? Will her younger sister adopt her? What would that be like?"
Probably better than dying is one answer.
Back on Earth, human hibernation would raise daunting policy questions that may take many years to resolve.
Outside of medicine, one application of human hibernation that has intrigued generations of science fiction writers is in long-duration space travel. During a voyage lasting years or decades, space explorers or colonists not only could avoid long periods of potential boredom, but also the aging process. Considering that the alternative to "sleeper ships" would be multi-generation starships so large that they'd be like small worlds, human hibernation in spaceflight could become an enabling technology for interstellar flight.
Big Questions: It's Not Too Early to Ask
Back on Earth, the daunting policy questions may take many years to resolve. Society ought to be aware of them now, before human hibernation technology outpaces its dramatic implications.
"Our current framework of ethical and legal regulation is adequate for cases like the gunshot victim who is chilled deeply for a few hours. Short-term cryopreservation is currently part of the continuum of care," notes David N. Hoffman, a clinical ethicist and health care attorney who teaches at Columbia University, and at Yeshiva University's Benjamin N. Cardozo School of Law and Albert Einstein College of Medicine.
"But we'll need a new framework when there's a capability to cryopreserve people for many years and still bring them back. There's also a legal-ethical issue involving the parties that decide to put the person into hibernation versus the patient wishes in terms of what risk benefit ratio they would accept, and who is responsible for the expense and burdens associated with cases that don't turn out just right?"
To begin thinking about practical solutions, Hoffman characterizes long-term human hibernation as an extension of the ethics of cyro-preserved embryos that are held for potential parents, often for long periods of time. But the human hibernation issue is much more complex.
"The ability of the custodian and patient to enter into a meaningful and beneficial arrangement is fraught, because medical advances necessary to address the person's illness or injury are -- by definition -- unknown," says Hoffman. "It means that you need a third party, a surrogate, to act on opportunities that the patient could never have contemplated."
Such multigenerational considerations might become more manageable, of course, in an era when gene therapy, bionic parts, and genetically engineered replacement organs enable dramatic life extension. But if people will be living for centuries regardless of whether or not they hibernate, then developing the medical technology may be the least of the challenges.
Meet Dr. Renee Wegrzyn, the first Director of President Biden's new health agency, ARPA-H
In today’s podcast episode, I talk with Renee Wegrzyn, appointed by President Biden as the first director of a health agency created last year, the Advanced Research Projects Agency for Health, or ARPA-H. It’s inspired by DARPA, the agency that develops innovations for the Defense department and has been credited with hatching world-changing technologies such as ARPANET, which became the internet.
Time will tell if ARPA-H will lead to similar achievements in the realm of health. That’s what President Biden and Congress expect in return for funding ARPA-H at 2.5 billion dollars over three years.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
How will the agency figure out which projects to take on, especially with so many patient advocates for different diseases demanding moonshot funding for rapid progress?
I talked with Dr. Wegrzyn about the opportunities and challenges, what lessons ARPA-H is borrowing from Operation Warp Speed, how she decided on the first ARPA-H project that was announced recently, why a separate agency was needed instead of reforming HHS and the National Institutes of Health to be better at innovation, and how ARPA-H will make progress on disease prevention in addition to treatments for cancer, Alzheimer’s and diabetes, among many other health priorities.
Dr. Wegrzyn’s resume leaves no doubt of her suitability for this role. She was a program manager at DARPA where she focused on applying gene editing and synthetic biology to the goal of improving biosecurity. For her work there, she received the Superior Public Service Medal and, in case that wasn’t enough ARPA experience, she also worked at another ARPA that leads advanced projects in intelligence, called I-ARPA. Before that, she ran technical teams in the private sector working on gene therapies and disease diagnostics, among other areas. She has been a vice president of business development at Gingko Bioworks and headed innovation at Concentric by Gingko. Her training and education includes a PhD and undergraduate degree in applied biology from the Georgia Institute of Technology and she did her postdoc as an Alexander von Humboldt Fellow in Heidelberg, Germany.
Dr. Wegrzyn told me that she’s “in the hot seat.” The pressure is on for ARPA-H especially after the need and potential for health innovation was spot lit by the pandemic and the unprecedented speed of vaccine development. We'll soon find out if ARPA-H can produce gamechangers in health that are equivalent to DARPA’s creation of the internet.
Show links:
ARPA-H - https://arpa-h.gov/
Dr. Wegrzyn profile - https://arpa-h.gov/people/renee-wegrzyn/
Dr. Wegrzyn Twitter - https://twitter.com/rwegrzyn?lang=en
President Biden Announces Dr. Wegrzyn's appointment - https://www.whitehouse.gov/briefing-room/statement...
Leaps.org coverage of ARPA-H - https://leaps.org/arpa/
ARPA-H program for joints to heal themselves - https://arpa-h.gov/news/nitro/ -
ARPA-H virtual talent search - https://arpa-h.gov/news/aco-talent-search/
Dr. Renee Wegrzyn was appointed director of ARPA-H last October.
Tiny, tough “water bears” may help bring new vaccines and medicines to sub-Saharan Africa
Microscopic tardigrades, widely considered to be some of the toughest animals on earth, can survive for decades without oxygen or water and are thought to have lived through a crash-landing on the moon. Also known as water bears, they survive by fully dehydrating and later rehydrating themselves – a feat only a few animals can accomplish. Now scientists are harnessing tardigrades’ talents to make medicines that can be dried and stored at ambient temperatures and later rehydrated for use—instead of being kept refrigerated or frozen.
Many biologics—pharmaceutical products made by using living cells or synthesized from biological sources—require refrigeration, which isn’t always available in many remote locales or places with unreliable electricity. These products include mRNA and other vaccines, monoclonal antibodies and immuno-therapies for cancer, rheumatoid arthritis and other conditions. Cooling is also needed for medicines for blood clotting disorders like hemophilia and for trauma patients.
Formulating biologics to withstand drying and hot temperatures has been the holy grail for pharmaceutical researchers for decades. It’s a hard feat to manage. “Biologic pharmaceuticals are highly efficacious, but many are inherently unstable,” says Thomas Boothby, assistant professor of molecular biology at University of Wyoming. Therefore, during storage and shipping, they must be refrigerated at 2 to 8 degrees Celsius (35 to 46 degrees Fahrenheit). Some must be frozen, typically at -20 degrees Celsius, but sometimes as low -90 degrees Celsius as was the case with the Pfizer Covid vaccine.
For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
The costly cold chain
The logistics network that ensures those temperature requirements are met from production to administration is called the cold chain. This cold chain network is often unreliable or entirely lacking in remote, rural areas in developing nations that have malfunctioning electrical grids. “Almost all routine vaccines require a cold chain,” says Christopher Fox, senior vice president of formulations at the Access to Advanced Health Institute. But when the power goes out, so does refrigeration, putting refrigerated or frozen medical products at risk. Consequently, the mRNA vaccines developed for Covid-19 and other conditions, as well as more traditional vaccines for cholera, tetanus and other diseases, often can’t be delivered to the most remote parts of the world.
To understand the scope of the challenge, consider this: In the U.S., more than 984 million doses of Covid-19 vaccine have been distributed so far. Each one needed refrigeration that, even in the U.S., proved challenging. Now extrapolate to all vaccines and the entire world. For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
Globally, the cold chain packaging market is valued at over $15 billion and is expected to exceed $60 billion by 2033.
Adobe Stock
Freeze-drying, also called lyophilization, which is common for many vaccines, isn’t always an option. Many freeze-dried vaccines still need refrigeration, and even medicines approved for storage at ambient temperatures break down in the heat of sub-Saharan Africa. “Even in a freeze-dried state, biologics often will undergo partial rehydration and dehydration, which can be extremely damaging,” Boothby explains.
The cold chain is also very expensive to maintain. The global pharmaceutical cold chain packaging market is valued at more than $15 billion, and is expected to exceed $60 billion by 2033, according to a report by Future Market Insights. This cost is only expected to grow. According to the consulting company Accenture, the number of medicines that require the cold chain are expected to grow by 48 percent, compared to only 21 percent for non-cold-chain therapies.
Tardigrades to the rescue
Tardigrades are only about a millimeter long – with four legs and claws, and they lumber around like bears, thus their nickname – but could provide a big solution. “Tardigrades are unique in the animal kingdom, in that they’re able to survive a vast array of environmental insults,” says Boothby, the Wyoming professor. “They can be dried out, frozen, heated past the boiling point of water and irradiated at levels that are thousands of times more than you or I could survive.” So, his team is gradually unlocking tardigrades’ survival secrets and applying them to biologic pharmaceuticals to make them withstand both extreme heat and desiccation without losing efficacy.
Boothby’s team is focusing on blood clotting factor VIII, which, as the name implies, causes blood to clot. Currently, Boothby is concentrating on the so-called cytoplasmic abundant heat soluble (CAHS) protein family, which is found only in tardigrades, protecting them when they dry out. “We showed we can desiccate a biologic (blood clotting factor VIII, a key clotting component) in the presence of tardigrade proteins,” he says—without losing any of its effectiveness.
The researchers mixed the tardigrade protein with the blood clotting factor and then dried and rehydrated that substance six times without damaging the latter. This suggests that biologics protected with tardigrade proteins can withstand real-world fluctuations in humidity.
Furthermore, Boothby’s team found that when the blood clotting factor was dried and stabilized with tardigrade proteins, it retained its efficacy at temperatures as high as 95 degrees Celsius. That’s over 200 degrees Fahrenheit, much hotter than the 58 degrees Celsius that the World Meteorological Organization lists as the hottest recorded air temperature on earth. In contrast, without the protein, the blood clotting factor degraded significantly. The team published their findings in the journal Nature in March.
Although tardigrades rarely live more than 2.5 years, they have survived in a desiccated state for up to two decades, according to Animal Diversity Web. This suggests that tardigrades’ CAHS protein can protect biologic pharmaceuticals nearly indefinitely without refrigeration or freezing, which makes it significantly easier to deliver them in locations where refrigeration is unreliable or doesn’t exist.
The tricks of the tardigrades
Besides the CAHS proteins, tardigrades rely on a type of sugar called trehalose and some other protectants. So, rather than drying up, their cells solidify into rigid, glass-like structures. As that happens, viscosity between cells increases, thereby slowing their biological functions so much that they all but stop.
Now Boothby is combining CAHS D, one of the proteins in the CAHS family, with trehalose. He found that CAHS D and trehalose each protected proteins through repeated drying and rehydrating cycles. They also work synergistically, which means that together they might stabilize biologics under a variety of dry storage conditions.
“We’re finding the protective effect is not just additive but actually is synergistic,” he says. “We’re keen to see if something like that also holds true with different protein combinations.” If so, combinations could possibly protect against a variety of conditions.
Commercialization outlook
Before any stabilization technology for biologics can be commercialized, it first must be approved by the appropriate regulators. In the U.S., that’s the U.S. Food and Drug Administration. Developing a new formulation would require clinical testing and vast numbers of participants. So existing vaccines and biologics likely won’t be re-formulated for dry storage. “Many were developed decades ago,” says Fox. “They‘re not going to be reformulated into thermo-stable vaccines overnight,” if ever, he predicts.
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits.
Instead, this technology is most likely to be used for the new products and formulations that are just being created. New and improved vaccines will be the first to benefit. Good candidates include the plethora of mRNA vaccines, as well as biologic pharmaceuticals for neglected diseases that affect parts of the world where reliable cold chain is difficult to maintain, Boothby says. Some examples include new, more effective vaccines for malaria and for pathogenic Escherichia coli, which causes diarrhea.
Tallying up the benefits
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits. For instance, MenAfriVac, a meningitis vaccine (without tardigrade proteins) developed for sub-Saharan Africa, can be stored at up to 40 degrees Celsius for four days before administration. “If you have a few days where you don’t need to maintain the cold chain, it’s easier to transport vaccines to remote areas,” Fox says, where refrigeration does not exist or is not reliable.
Better health is an obvious benefit. MenAfriVac reduced suspected meningitis cases by 57 percent in the overall population and more than 99 percent among vaccinated individuals.
Lower healthcare costs are another benefit. One study done in Togo found that the cold chain-related costs increased the per dose vaccine price up to 11-fold. The ability to ship the vaccines using the usual cold chain, but transporting them at ambient temperatures for the final few days cut the cost in half.
There are environmental benefits, too, such as reducing fuel consumption and greenhouse gas emissions. Cold chain transports consume 20 percent more fuel than non-cold chain shipping, due to refrigeration equipment, according to the International Trade Administration.
A study by researchers at Johns Hopkins University compared the greenhouse gas emissions of the new, oral Vaxart COVID-19 vaccine (which doesn’t require refrigeration) with four intramuscular vaccines (which require refrigeration or freezing). While the Vaxart vaccine is still in clinical trials, the study found that “up to 82.25 million kilograms of CO2 could be averted by using oral vaccines in the U.S. alone.” That is akin to taking 17,700 vehicles out of service for one year.
Although tardigrades’ protective proteins won’t be a component of biologic pharmaceutics for several years, scientists are proving that this approach is viable. They are hopeful that a day will come when vaccines and biologics can be delivered anywhere in the world without needing refrigerators or freezers en route.