Slowing Aging Could Transform Society As We Know It
People's lives have been getting longer for more than a century. In 1900, in even the wealthiest countries, life expectancy was under 50, according to the World Health Organization. By 2015, the worldwide average was 74, and a girl born in Japan that year could expect to live to 87. Most of that extra lifespan came from improvements in nutrition and sanitation, and the development of vaccines and antibiotics.
People's lives have been getting longer for more than a century. In 1900, in even the wealthiest countries, life expectancy was under 50, according to the World Health Organization. By 2015, the worldwide average was 74, and a girl born in Japan that year could expect to live to 87. Most of that extra lifespan came from improvements in nutrition and sanitation, and the development of vaccines and antibiotics.
The question is, how will slowing aging change society?
But now scientists are trying to move beyond just eliminating the diseases that kill us to actually slowing the aging process itself. By developing new drugs to tackle the underlying mechanisms that make our bodies grow old and frail, researchers hope to give people many more years of healthy life. The question is, how will that change society?
There are several biological mechanisms that affect aging. One involves how cells react when they're damaged. Some die, but others enter a state called senescence, in which they halt their normal growth and send out signals that something's gone wrong. That signaling causes inflammation at the sight of a wound, for instance, and triggers the body's repair processes. Once everything is back to normal, the senescent cells die off and the inflammation fades. But as we age, the machinery for clearing senescent cells becomes less efficient and they begin to pile up. Some researchers think that this accumulation of senescent cells is what causes chronic inflammation, which has been implicated in conditions such as heart disease and diabetes.
The first clinical trial in humans of senolytic drugs is happening now.
In 2015, researchers at the Mayo Clinic in Minnesota and the Scripps Research Institute in Florida tested the first so-called senolytic drugs, which cause senescent cells to die. After the scientists treated mice with a combination of an anti-cancer drug and a plant pigment that can act as an antioxidant, some of the senescent cells shrank away and caused the mouse's heart function to revert to that of a much younger mouse.
"That suggests that senescence isn't just a consequence of aging, it's actually a driver of aging," says Paul Robbins, a professor of molecular medicine at Scripps and one of the researchers involved. Other animal studies have found that reducing the number of senescent cells improves a variety of age-related conditions, such as frailty, diabetes, liver disease, pulmonary fibrosis, and osteoporosis.
Now the same researchers are moving those tests to humans in the first clinical trials of senolytic drugs. In July 2016, the Mayo Clinic launched what may be the first clinical trial of senolytic therapy, studying the effect of the two drugs, called dasatinib and quercetin, on people with chronic kidney disease, which they hope to complete in 2021. Meanwhile Mayo and Scripps researchers have identified six different biochemical pathways that give rise to senescence, along with several drug candidates that target those pathways. Robbins says it's likely that different drugs will work better for different cells in the body.
Would radical life extension lead to moral deterioration, risk aversion, and an abandonment of creativity?
In Robbins' work, treating mice with senolytic drugs has extended their median lifespan—the age at which half the animals in his experiment have died—by about 30 percent, but hasn't extended the maximum lifespan. In other words, the oldest mice treated with the drugs died at the same age as mice who hadn't been treated, but more of the mice who received senolytics lived to that ripe old age. The same may turn out to be true for humans, with more people living to the limits of the lifespan—estimated by some to be about 115—but no one living much longer. On the other hand, Robbins says, it's early days for these therapies, and it may turn out that delaying aging actually does push the limit of life farther out.
Others expect more radical extensions of human life; British gerontologist Aubrey DeGray talks about people living for 1000 years, and people who call themselves transhumanists imagine replacing body parts as they wear out, or merging our minds with computers to make us essentially immortal. Brian Green, an ethicist at Santa Clara University in California, finds that concept horrifying. He fears it would make people value their own lives too highly, demoting other moral goods such as self-sacrifice or concern for the environment. "It kind of lends itself to a moral myopia," he says. "Humans work better if they have a goal beyond their own survival." And people who live for centuries might become averse to risk, because with longer lives they have more to lose if they were to accidentally die, and might be resistant to change, draining the world of creativity.
Most researchers are focused on "extending the 'healthspan,' so that the people who live into their 90s are vigorous and disease-free."
He's not too worried, though, that that's where studies such as the Mayo Clinic's are headed, and supports that sort of research. "Hopefully these things will work, and they'll help us live a little bit longer," Green says, "but the idea of radical life extension where we're going to live indefinitely longer, I think that is very unrealistic."
Most of the researchers working on combatting aging don't, in fact, talk of unlimited lifespans. Rather, they talk about extending the "healthspan," so that the people who live into their 90s are vigorous and disease-free up until nearly the end of their lives.
If scientists can lengthen life while reducing the number of years people suffer with dementia or infirmity, that could be beneficial, says Stephen Post, a professor of medicine and director of the Center for Medical Humanities, Compassionate Care, and Bioethics at Stony Brook University in New York. But even increasing the population of vigorous 90-somethings might have negative implications for society. "What would we do with all these people who are living so long?" he asks. "Would we stop having children? Would we never retire?"
Adding 2.2 healthy years to the U.S. life by delaying aging could benefit the economy by $7.1 trillion over 50 years.
If people keep working well past their 60s, that could mean there would be fewer jobs available for younger people, says Maxwell Mehlman, professor of bioethics at Case Western Reserve University's School of Law in Ohio. Mehlman says society may have to rethink age discrimination laws, which bar firing or refusing to hire people over a certain age, to make room for younger workers. On the other hand, those who choose to retire and live another two or three decades could strain pension and entitlement systems.
But a longer healthspan could reduce costs in the healthcare system, which now are driven disproportionately by older people. Jay Olshansky, an epidemiologist at the University of Illinois at Chicago School of Public Health, has estimated that adding 2.2 healthy years to the U.S. life by delaying aging would benefit the economy by $7.1 trillion over 50 years, as spending on illnesses such as cancer and heart disease drop.
For his part, Robbins says that the scientific conferences in the anti-aging field, which tend to focus on the technical research, should hold more sessions on social and economic impacts. If anti-aging therapies start extending healthy lifespans, as he and other researchers hope they will within a decade or so, society will need to adjust.
Ultimately, it's an extension of health, not just of longevity, that will benefit us. Extra decades of senescence do nobody any good. As Green says, "Nobody wants to live in a nursing home for 1000 years."
Catching colds may help protect kids from Covid
A common cold virus causes the immune system to produce T cells that also provide protection against SARS-CoV-2, according to new research. The study, published last month in PNAS, shows that this effect is most pronounced in young children. The finding may help explain why most young people who have been exposed to the cold-causing coronavirus have not developed serious cases of COVID-19.
One curiosity stood out in the early days of the COVID-19 pandemic – why were so few kids getting sick. Generally young children and the elderly are the most vulnerable to disease outbreaks, particularly viral infections, either because their immune systems are not fully developed or they are starting to fail.
But solid information on the new infection was so scarce that many public health officials acted on the precautionary principle, assumed a worst-case scenario, and applied the broadest, most restrictive policies to all people to try to contain the coronavirus SARS-CoV-2.
One early thought was that lockdowns worked and kids (ages 6 months to 17 years) simply were not being exposed to the virus. So it was a shock when data started to come in showing that well over half of them carried antibodies to the virus, indicating exposure without getting sick. That trend grew over time and the latest tracking data from the CDC shows that 96.3 percent of kids in the U.S. now carry those antibodies.
Antibodies are relatively quick and easy to measure, but some scientists are exploring whether the reactions of T cells could serve as a more useful measure of immune protection.
But that couldn't be the whole story because antibody protection fades, sometimes as early as a month after exposure and usually within a year. Additionally, SARS-CoV-2 has been spewing out waves of different variants that were more resistant to antibodies generated by their predecessors. The resistance was so significant that over time the FDA withdrew its emergency use authorization for a handful of monoclonal antibodies with earlier approval to treat the infection because they no longer worked.
Antibodies got most of the attention early on because they are part of the first line response of the immune system. Antibodies can bind to viruses and neutralize them, preventing infection. They are relatively quick and easy to measure and even manufacture, but as SARS-CoV-2 showed us, often viruses can quickly evolve to become more resistant to them. Some scientists are exploring whether the reactions of T cells could serve as a more useful measure of immune protection.
Kids, colds and T cells
T cells are part of the immune system that deals with cells once they have become infected. But working with T cells is much more difficult, takes longer, and is more expensive than working with antibodies. So studies often lags behind on this part of the immune system.
A group of researchers led by Annika Karlsson at the Karolinska Institute in Sweden focuses on T cells targeting virus-infected cells and, unsurprisingly, saw that they can play a role in SARS-CoV-2 infection. Other labs have shown that vaccination and natural exposure to the virus generates different patterns of T cell responses.
The Swedes also looked at another member of the coronavirus family, OC43, which circulates widely and is one of several causes of the common cold. The molecular structure of OC43 is similar to its more deadly cousin SARS-CoV-2. Sometimes a T cell response to one virus can produce a cross-reactive response to a similar protein structure in another virus, meaning that T cells will identify and respond to the two viruses in much the same way. Karlsson looked to see if T cells for OC43 from a wide age range of patients were cross-reactive to SARS-CoV-2.
And that is what they found, as reported in the PNAS study last month; there was cross-reactive activity, but it depended on a person’s age. A subset of a certain type of T cells, called mCD4+,, that recognized various protein parts of the cold-causing virus, OC43, expressed on the surface of an infected cell – also recognized those same protein parts from SARS-CoV-2. The T cell response was lower than that generated by natural exposure to SARS-CoV-2, but it was functional and thus could help limit the severity of COVID-19.
“One of the most politicized aspects of our pandemic response was not accepting that children are so much less at risk for severe disease with COVID-19,” because usually young children are among the most vulnerable to pathogens, says Monica Gandhi, professor of medicine at the University of California San Francisco.
“The cross-reactivity peaked at age six when more than half the people tested have a cross-reactive immune response,” says Karlsson, though their sample is too small to say if this finding applies more broadly across the population. The vast majority of children as young as two years had OC43-specific mCD4+ T cell responses. In adulthood, the functionality of both the OC43-specific and the cross-reactive T cells wane significantly, especially with advanced age.
“Considering that the mortality rate in children is the lowest from ages five to nine, and higher in younger children, our results imply that cross-reactive mCD4+ T cells may have a role in the control of SARS-CoV-2 infection in children,” the authors wrote in their paper.
“One of the most politicized aspects of our pandemic response was not accepting that children are so much less at risk for severe disease with COVID-19,” because usually young children are among the most vulnerable to pathogens, says Monica Gandhi, professor of medicine at the University of California San Francisco and author of the book, Endemic: A Post-Pandemic Playbook, to be released by the Mayo Clinic Press this summer. The immune response of kids to SARS-CoV-2 stood our expectations on their head. “We just haven't seen this before, so knowing the mechanism of protection is really important.”
Why the T cell immune response can fade with age is largely unknown. With some viruses such as measles, a single vaccination or infection generates life-long protection. But respiratory tract infections, like SARS-CoV-2, cause a localized infection - specific to certain organs - and that response tends to be shorter lived than systemic infections that affect the entire body. Karlsson suspects the elderly might be exposed to these localized types of viruses less often. Also, frequent continued exposure to a virus that results in reactivation of the memory T cell pool might eventually result in “a kind of immunosenescence or immune exhaustion that is associated with aging,” Karlsson says. https://leaps.org/scientists-just-started-testing-a-new-class-of-drugs-to-slow-and-even-reverse-aging/particle-3 This fading protection is why older people need to be repeatedly vaccinated against SARS-CoV-2.
Policy implications
Following the numbers on COVID-19 infections and severity over the last three years have shown us that healthy young people without risk factors are not likely to develop serious disease. This latest study points to a mechanism that helps explain why. But the inertia of existing policies remains. How should we adjust policy recommendations based on what we know today?
The World Health Organization (WHO) updated their COVID-19 vaccination guidance on March 28. It calls for a focus on vaccinating and boosting those at risk for developing serious disease. The guidance basically shrugged its shoulders when it came to healthy children and young adults receiving vaccinations and boosters against COVID-19. It said the priority should be to administer the “traditional essential vaccines for children,” such as those that protect against measles, rubella, and mumps.
“As an immunologist and a mother, I think that catching a cold or two when you are a kid and otherwise healthy is not that bad for you. Children have a much lower risk of becoming severely ill with SARS-CoV-2,” says Karlsson. She has followed public health guidance in Sweden, which means that her young children have not been vaccinated, but being older, she has received the vaccine and boosters. Gandhi and her children have been vaccinated, but they do not plan on additional boosters.
The WHO got it right in “concentrating on what matters,” which is getting traditional childhood immunizations back on track after their dramatic decline over the last three years, says Gandhi. Nor is there a need for masking in schools, according to a study from the Catalonia region of Spain. It found “no difference in masking and spread in schools,” particularly since tracking data indicate that nearly all young people have been exposed to SARS-CoV-2.
Both researchers lament that public discussion has overemphasized the quickly fading antibody part of the immune response to SARS-CoV-2 compared with the more durable T cell component. They say developing an efficient measure of T cell response for doctors to use in the clinic would help to monitor immunity in people at risk for severe cases of COVID-19 compared with the current method of toting up potential risk factors.
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on new scientific theories and progress to give you a therapeutic dose of inspiration headed into the weekend.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the stories covered this week:
- The eyes are the windows to the soul - and biological aging?
- What bean genes mean for health and the planet
- This breathing practice could lower levels of tau proteins
- AI beats humans at assessing heart health
- Should you get a nature prescription?